Exemplo n.º 1
0
    def post_process(self, *args, **kwargs):
        wrf_home = self.get_config(**kwargs).get('wrf_home')
        start_date = self.get_config(**kwargs).get('start_date')
        em_real_dir = utils.get_em_real_dir(wrf_home)

        logging.info('Moving the real logs')
        utils.move_files_with_prefix(
            em_real_dir, 'rsl*',
            os.path.join(utils.get_logs_dir(wrf_home),
                         'rsl-real-%s' % start_date))
Exemplo n.º 2
0
def extract_mean_rainfall_from_shp_file(nc_f, wrf_output, output_prefix, output_name, basin_shp_file, basin_extent,
                                        curw_db_adapter=None, curw_db_upsert=False, run_prefix='WRF',
                                        run_name='Cloud-1'):
    lon_min, lat_min, lon_max, lat_max = basin_extent

    nc_vars = ext_utils.extract_variables(nc_f, ['RAINC', 'RAINNC'], lat_min, lat_max, lon_min, lon_max)
    lats = nc_vars['XLAT']
    lons = nc_vars['XLONG']
    prcp = nc_vars['RAINC'] + nc_vars['RAINNC']
    times = nc_vars['Times']

    diff = ext_utils.get_two_element_average(prcp)

    polys = shapefile.Reader(basin_shp_file)

    output_dir = utils.create_dir_if_not_exists(os.path.join(wrf_output, output_prefix))

    with TemporaryDirectory(prefix=output_prefix) as temp_dir:
        output_file_path = os.path.join(temp_dir, output_prefix + '.txt')
        kub_rf = {}
        with open(output_file_path, 'w') as output_file:
            kub_rf[output_name] = []
            for t in range(0, len(times) - 1):
                cnt = 0
                rf_sum = 0.0
                for y in range(0, len(lats)):
                    for x in range(0, len(lons)):
                        if utils.is_inside_polygon(polys, lats[y], lons[x]):
                            cnt = cnt + 1
                            rf_sum = rf_sum + diff[t, y, x]
                mean_rf = rf_sum / cnt

                t_str = (
                    utils.datetime_utc_to_lk(dt.datetime.strptime(times[t], '%Y-%m-%d_%H:%M:%S'),
                                             shift_mins=30)).strftime('%Y-%m-%d %H:%M:%S')
                output_file.write('%s\t%.4f\n' % (t_str, mean_rf))
                kub_rf[output_name].append([t_str, mean_rf])

        utils.move_files_with_prefix(temp_dir, '*.txt', output_dir)

    if curw_db_adapter is not None:
        station = [Station.CUrW, output_name, output_name, -999, -999, 0, 'Kelani upper basin mean rainfall']
        if ext_utils.create_station_if_not_exists(curw_db_adapter, station):
            logging.info('%s station created' % output_name)

        logging.info('Pushing data to the db...')
        ext_utils.push_rainfall_to_db(curw_db_adapter, kub_rf, upsert=curw_db_upsert, name=run_name,
                                      source=run_prefix)
    else:
        logging.info('curw_db_adapter not available. Unable to push data!')
Exemplo n.º 3
0
    def post_process(self, *args, **kwargs):
        # make a sym link in the nfs dir
        wrf_config = self.get_config(**kwargs)
        wps_dir = utils.get_wps_dir(wrf_config.get('wrf_home'))

        nfs_metgrid_dir = os.path.join(wrf_config.get('nfs_dir'), 'metgrid')

        utils.create_dir_if_not_exists(nfs_metgrid_dir)
        # utils.delete_files_with_prefix(nfs_metgrid_dir, 'met_em.d*')
        # utils.create_symlink_with_prefix(wps_dir, 'met_em.d*', nfs_metgrid_dir)

        utils.create_zip_with_prefix(wps_dir, 'met_em.d*',
                                     os.path.join(wps_dir, 'metgrid.zip'))

        utils.delete_files_with_prefix(nfs_metgrid_dir, 'met_em.d*')
        utils.move_files_with_prefix(wps_dir, 'metgrid.zip', nfs_metgrid_dir)
Exemplo n.º 4
0
def extract_weather_stations(nc_f, wrf_output, weather_stations=None, curw_db_adapter=None, curw_db_upsert=False,
                             run_prefix='WRF', run_name='Cloud-1'):
    if weather_stations is None:
        weather_stations = res_mgr.get_resource_path('extraction/local/kelani_basin_stations.txt')

    nc_fid = Dataset(nc_f, 'r')
    times_len, times = ext_utils.extract_time_data(nc_f)

    prefix = 'stations_rf'
    stations_dir = utils.create_dir_if_not_exists(os.path.join(wrf_output, prefix))

    stations_rf = {}
    with TemporaryDirectory(prefix=prefix) as temp_dir:
        with open(weather_stations, 'r') as csvfile:
            stations = csv.reader(csvfile, delimiter=' ')

            for row in stations:
                logging.info(' '.join(row))
                lon = row[1]
                lat = row[2]

                station_prcp = nc_fid.variables['RAINC'][:, lat, lon] + nc_fid.variables['RAINNC'][:, lat, lon]

                station_diff = ext_utils.get_two_element_average(station_prcp)

                stations_rf[row[0]] = []

                station_file_path = os.path.join(temp_dir, row[0] + '_%s.txt' % prefix)
                with open(station_file_path, 'w') as station_file:
                    for t in range(0, len(times) - 1):
                        t_str = (
                            utils.datetime_utc_to_lk(dt.datetime.strptime(times[t], '%Y-%m-%d_%H:%M:%S'),
                                                     shift_mins=30)).strftime('%Y-%m-%d %H:%M:%S')
                        station_file.write('%s\t%.4f\n' % (t_str, station_diff[t]))
                        stations_rf[row[0]].append([t_str, station_diff[t]])

        utils.move_files_with_prefix(temp_dir, '*.txt', stations_dir)

    if curw_db_adapter is not None:
        logging.info('Pushing data to the db...')
        ext_utils.push_rainfall_to_db(curw_db_adapter, stations_rf, upsert=curw_db_upsert, name=run_name,
                                      source=run_prefix)
    else:
        logging.info('curw_db_adapter not available. Unable to push data!')

    nc_fid.close()
Exemplo n.º 5
0
    def post_process(self, *args, **kwargs):
        config = self.get_config(**kwargs)
        wrf_home = config.get('wrf_home')
        em_real_dir = utils.get_em_real_dir(wrf_home)
        start_date = config.get('start_date')

        logging.info('Moving the WRF logs')
        utils.move_files_with_prefix(
            em_real_dir, 'rsl*',
            os.path.join(utils.get_logs_dir(wrf_home),
                         'rsl-wrf-%s' % start_date))

        logging.info('Moving the WRF files to output directory')
        # move the d03 to nfs
        # ex: /mnt/disks/wrf-mod/nfs/output/wrf0/2017-08-13_00:00/0 .. n
        d03_dir = utils.get_incremented_dir_path(
            os.path.join(config.get('nfs_dir'), 'output',
                         os.path.basename(wrf_home), start_date, '0'))
        self.add_config_item('wrf_output_dir', d03_dir)

        d03_file = os.path.join(em_real_dir,
                                'wrfout_d03_' + start_date + ':00')
        ext_utils.ncks_extract_variables(
            d03_file, ['RAINC', 'RAINNC', 'XLAT', 'XLONG', 'Times'],
            d03_file + '_SL')

        d01_file = os.path.join(em_real_dir,
                                'wrfout_d01_' + start_date + ':00')
        ext_utils.ncks_extract_variables(
            d01_file, ['RAINC', 'RAINNC', 'XLAT', 'XLONG', 'Times'],
            d01_file + '_SL')

        # move the wrfout_SL and the namelist files to the nfs
        utils.create_dir_if_not_exists(d03_dir)
        shutil.move(d03_file + '_SL', d03_dir)
        shutil.move(d01_file + '_SL', d03_dir)
        shutil.copy2(os.path.join(em_real_dir, 'namelist.input'), d03_dir)

        # move the rest to the OUTPUT dir of each run
        # todo: in the docker impl - FIND A BETTER WAY
        archive_dir = utils.get_incremented_dir_path(
            os.path.join(utils.get_output_dir(wrf_home), start_date))
        utils.move_files_with_prefix(em_real_dir, 'wrfout_d*', archive_dir)
Exemplo n.º 6
0
def extract_weather_stations2(nc_f, wrf_output, weather_stations=None, curw_db_adapter=None, curw_db_upsert=False,
                              run_prefix='WRF', run_name='Cloud-1'):
    if weather_stations is None:
        weather_stations = res_mgr.get_resource_path('extraction/local/wrf_stations.txt')

    points = np.genfromtxt(weather_stations, delimiter=',', names=True, dtype=None)

    point_prcp = ext_utils.extract_points_array_rf_series(nc_f, points)

    t0 = dt.datetime.strptime(point_prcp['Times'][0], '%Y-%m-%d %H:%M:%S')
    t1 = dt.datetime.strptime(point_prcp['Times'][1], '%Y-%m-%d %H:%M:%S')

    res_min = int((t1 - t0).total_seconds() / 60)

    prefix = 'stations_rf'
    stations_dir = utils.create_dir_if_not_exists(os.path.join(wrf_output, prefix))

    stations_rf = {}
    with TemporaryDirectory(prefix=prefix) as temp_dir:
        for point in points:
            logging.info(str(point))
            station_name = point[0].decode()
            stations_rf[station_name] = []

            station_file_path = os.path.join(temp_dir, station_name + '_%s.txt' % prefix)
            with open(station_file_path, 'w') as station_file:
                for t in range(0, len(point_prcp)):
                    station_file.write('%s\t%.4f\n' % (point_prcp['Times'][t], point_prcp[station_name][t]))
                    stations_rf[station_name].append([point_prcp['Times'][t], point_prcp[station_name][t]])

        utils.move_files_with_prefix(temp_dir, '*.txt', stations_dir)

    if curw_db_adapter is not None:
        logging.info('Pushing data to the db...')
        ext_utils.push_rainfall_to_db(curw_db_adapter, stations_rf, upsert=curw_db_upsert, name=run_name,
                                      source=run_prefix)
    else:
        logging.info('curw_db_adapter not available. Unable to push data!')
Exemplo n.º 7
0
def create_rf_plots_wrf(nc_f, plots_output_dir, plots_output_base_dir, lon_min=None, lat_min=None, lon_max=None,
                        lat_max=None, filter_threshold=0.05, run_prefix='WRF'):
    if not all([lon_min, lat_min, lon_max, lat_max]):
        lon_min, lat_min, lon_max, lat_max = constants.SRI_LANKA_EXTENT

    variables = ext_utils.extract_variables(nc_f, 'RAINC, RAINNC', lat_min, lat_max, lon_min, lon_max)

    lats = variables['XLAT']
    lons = variables['XLONG']

    # cell size is calc based on the mean between the lat and lon points
    cz = np.round(np.mean(np.append(lons[1:len(lons)] - lons[0: len(lons) - 1], lats[1:len(lats)]
                                    - lats[0: len(lats) - 1])), 3)
    clevs = [0, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 750]
    cmap = cm.s3pcpn

    basemap = Basemap(projection='merc', llcrnrlon=lon_min, llcrnrlat=lat_min, urcrnrlon=lon_max,
                      urcrnrlat=lat_max, resolution='h')

    data = variables['RAINC'] + variables['RAINNC']
    logging.info('Filtering with the threshold %f' % filter_threshold)
    data[data < filter_threshold] = 0.0
    variables['PRECIP'] = data

    prefix = 'wrf_plots'
    with TemporaryDirectory(prefix=prefix) as temp_dir:
        t0 = dt.datetime.strptime(variables['Times'][0], '%Y-%m-%d_%H:%M:%S')
        t1 = dt.datetime.strptime(variables['Times'][1], '%Y-%m-%d_%H:%M:%S')
        step = (t1 - t0).total_seconds() / 3600.0

        inst_precip = ext_utils.get_two_element_average(variables['PRECIP'])
        cum_precip = ext_utils.get_two_element_average(variables['PRECIP'], return_diff=False)

        for i in range(1, len(variables['Times'])):
            time = variables['Times'][i]
            ts = dt.datetime.strptime(time, '%Y-%m-%d_%H:%M:%S')
            lk_ts = utils.datetime_utc_to_lk(ts, shift_mins=30)
            logging.info('processing %s', time)

            # instantaneous precipitation (hourly)
            inst_file = os.path.join(temp_dir, 'wrf_inst_' + lk_ts.strftime('%Y-%m-%d_%H:%M:%S'))

            ext_utils.create_asc_file(np.flip(inst_precip[i - 1], 0), lats, lons, inst_file + '.asc', cell_size=cz)

            title = {
                'label': 'Hourly rf for %s LK' % lk_ts.strftime('%Y-%m-%d_%H:%M:%S'),
                'fontsize': 30
            }
            ext_utils.create_contour_plot(inst_precip[i - 1], inst_file + '.png', lat_min, lon_min, lat_max, lon_max,
                                          title, clevs=clevs, cmap=cmap, basemap=basemap)

            if (i * step) % 24 == 0:
                t = 'Daily rf from %s LK to %s LK' % (
                    (lk_ts - dt.timedelta(hours=24)).strftime('%Y-%m-%d_%H:%M:%S'), lk_ts.strftime('%Y-%m-%d_%H:%M:%S'))
                d = int(i * step / 24) - 1
                logging.info('Creating images for D%d' % d)
                cum_file = os.path.join(temp_dir, 'wrf_cum_%dd' % d)

                if i * step / 24 > 1:
                    cum_precip_24h = cum_precip[i - 1] - cum_precip[i - 1 - int(24 / step)]
                else:
                    cum_precip_24h = cum_precip[i - 1]

                ext_utils.create_asc_file(np.flip(cum_precip_24h, 0), lats, lons, cum_file + '.asc', cell_size=cz)

                ext_utils.create_contour_plot(cum_precip_24h, cum_file + '.png', lat_min, lon_min, lat_max, lon_max, t,
                                              clevs=clevs, cmap=cmap, basemap=basemap)

                gif_file = os.path.join(temp_dir, 'wrf_inst_%dd' % d)
                images = [os.path.join(temp_dir, 'wrf_inst_' + j.strftime('%Y-%m-%d_%H:%M:%S') + '.png') for j in
                          np.arange(lk_ts - dt.timedelta(hours=24 - step), lk_ts + dt.timedelta(hours=step),
                                    dt.timedelta(hours=step)).astype(dt.datetime)]
                ext_utils.create_gif(images, gif_file + '.gif')

        logging.info('Creating the zips')
        utils.create_zip_with_prefix(temp_dir, '*.png', os.path.join(temp_dir, 'pngs.zip'))
        utils.create_zip_with_prefix(temp_dir, '*.asc', os.path.join(temp_dir, 'ascs.zip'))

        logging.info('Cleaning up instantaneous pngs and ascs - wrf_inst_*')
        utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.png')
        utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.asc')

        logging.info('Copying pngs to ' + plots_output_dir)
        utils.move_files_with_prefix(temp_dir, '*.png', plots_output_dir)
        logging.info('Copying ascs to ' + plots_output_dir)
        utils.move_files_with_prefix(temp_dir, '*.asc', plots_output_dir)
        logging.info('Copying gifs to ' + plots_output_dir)
        utils.copy_files_with_prefix(temp_dir, '*.gif', plots_output_dir)
        logging.info('Copying zips to ' + plots_output_dir)
        utils.copy_files_with_prefix(temp_dir, '*.zip', plots_output_dir)

        plots_latest_dir = os.path.join(plots_output_base_dir, 'latest', run_prefix, os.path.basename(plots_output_dir))
        # <nfs>/latest/wrf0 .. 3
        utils.create_dir_if_not_exists(plots_latest_dir)
        # todo: this needs to be adjusted to handle the multiple runs
        logging.info('Copying gifs to ' + plots_latest_dir)
        utils.copy_files_with_prefix(temp_dir, '*.gif', plots_latest_dir)
Exemplo n.º 8
0
def extract_metro_colombo(nc_f, wrf_output, wrf_output_base, curw_db_adapter=None, curw_db_upsert=False,
                          run_prefix='WRF', run_name='Cloud-1'):
    """
    extract Metro-Colombo rf and divide area into to 4 quadrants 
    :param wrf_output_base: 
    :param run_name: 
    :param nc_f: 
    :param wrf_output: 
    :param curw_db_adapter: If not none, data will be pushed to the db 
    :param run_prefix: 
    :param curw_db_upsert: 
    :return: 
    """
    prefix = 'met_col'
    lon_min, lat_min, lon_max, lat_max = constants.COLOMBO_EXTENT

    nc_vars = ext_utils.extract_variables(nc_f, ['RAINC', 'RAINNC'], lat_min, lat_max, lon_min, lon_max)
    lats = nc_vars['XLAT']
    lons = nc_vars['XLONG']
    prcp = nc_vars['RAINC'] + nc_vars['RAINNC']
    times = nc_vars['Times']

    diff = ext_utils.get_two_element_average(prcp)

    width = len(lons)
    height = len(lats)

    output_dir = utils.create_dir_if_not_exists(os.path.join(wrf_output, prefix))

    basin_rf = np.mean(diff[0:(len(times) - 1 if len(times) < 24 else 24), :, :])

    alpha_file_path = os.path.join(wrf_output_base, prefix + '_alphas.txt')
    utils.create_dir_if_not_exists(os.path.dirname(alpha_file_path))
    with open(alpha_file_path, 'a+') as alpha_file:
        t = utils.datetime_utc_to_lk(dt.datetime.strptime(times[0], '%Y-%m-%d_%H:%M:%S'), shift_mins=30)
        alpha_file.write('%s\t%f\n' % (t.strftime('%Y-%m-%d_%H:%M:%S'), basin_rf))

    cz = ext_utils.get_mean_cell_size(lats, lons)
    no_data = -99

    divs = (2, 2)
    div_rf = {}
    for i in range(divs[0] * divs[1]):
        div_rf[prefix + str(i)] = []

    with TemporaryDirectory(prefix=prefix) as temp_dir:
        subsection_file_path = os.path.join(temp_dir, 'sub_means.txt')
        with open(subsection_file_path, 'w') as subsection_file:
            for tm in range(0, len(times) - 1):
                t_str = (
                    utils.datetime_utc_to_lk(dt.datetime.strptime(times[tm], '%Y-%m-%d_%H:%M:%S'),
                                             shift_mins=30)).strftime('%Y-%m-%d %H:%M:%S')

                output_file_path = os.path.join(temp_dir, 'rf_' + t_str.replace(' ', '_') + '.asc')
                ext_utils.create_asc_file(np.flip(diff[tm, :, :], 0), lats, lons, output_file_path, cell_size=cz,
                                          no_data_val=no_data)

                # writing subsection file
                x_idx = [round(i * width / divs[0]) for i in range(0, divs[0] + 1)]
                y_idx = [round(i * height / divs[1]) for i in range(0, divs[1] + 1)]

                subsection_file.write(t_str)
                for j in range(len(y_idx) - 1):
                    for i in range(len(x_idx) - 1):
                        quad = j * divs[1] + i
                        sub_sec_mean = np.mean(diff[tm, y_idx[j]:y_idx[j + 1], x_idx[i]: x_idx[i + 1]])
                        subsection_file.write('\t%.4f' % sub_sec_mean)
                        div_rf[prefix + str(quad)].append([t_str, sub_sec_mean])
                subsection_file.write('\n')

        utils.create_zip_with_prefix(temp_dir, 'rf_*.asc', os.path.join(temp_dir, 'ascs.zip'), clean_up=True)

        utils.move_files_with_prefix(temp_dir, '*', output_dir)

    # writing to the database
    if curw_db_adapter is not None:
        for i in range(divs[0] * divs[1]):
            name = prefix + str(i)
            station = [Station.CUrW, name, name, -999, -999, 0, "met col quadrant %d" % i]
            if ext_utils.create_station_if_not_exists(curw_db_adapter, station):
                logging.info('%s station created' % name)

        logging.info('Pushing data to the db...')
        ext_utils.push_rainfall_to_db(curw_db_adapter, div_rf, upsert=curw_db_upsert, source=run_prefix, name=run_name)
    else:
        logging.info('curw_db_adapter not available. Unable to push data!')

    return basin_rf
Exemplo n.º 9
0
def extract_kelani_basin_rainfall_flo2d(nc_f, nc_f_prev_days, output_dir, avg_basin_rf=1.0, kelani_basin_file=None,
                                        target_rfs=None, output_prefix='RAINCELL'):
    """
    :param output_prefix:
    :param nc_f:
    :param nc_f_prev_days: 
    :param output_dir: 
    :param avg_basin_rf: 
    :param kelani_basin_file: 
    :param target_rfs: 
    :return: 
    """
    if target_rfs is None:
        target_rfs = [100, 150, 200, 250, 300]
    if kelani_basin_file is None:
        kelani_basin_file = res_mgr.get_resource_path('extraction/local/kelani_basin_points_250m.txt')

    points = np.genfromtxt(kelani_basin_file, delimiter=',')

    kel_lon_min = np.min(points, 0)[1]
    kel_lat_min = np.min(points, 0)[2]
    kel_lon_max = np.max(points, 0)[1]
    kel_lat_max = np.max(points, 0)[2]

    diff, kel_lats, kel_lons, times = ext_utils.extract_area_rf_series(nc_f, kel_lat_min, kel_lat_max, kel_lon_min,
                                                                       kel_lon_max)

    def get_bins(arr):
        sz = len(arr)
        return (arr[1:sz - 1] + arr[0:sz - 2]) / 2

    lat_bins = get_bins(kel_lats)
    lon_bins = get_bins(kel_lons)

    t0 = dt.datetime.strptime(times[0], '%Y-%m-%d_%H:%M:%S')
    t1 = dt.datetime.strptime(times[1], '%Y-%m-%d_%H:%M:%S')
    t_end = dt.datetime.strptime(times[-1], '%Y-%m-%d_%H:%M:%S')

    utils.create_dir_if_not_exists(output_dir)

    prev_diff = []
    prev_days = len(nc_f_prev_days)
    for i in range(prev_days):
        if nc_f_prev_days[i]:
            p_diff, _, _, _ = ext_utils.extract_area_rf_series(nc_f_prev_days[i], kel_lat_min, kel_lat_max, kel_lon_min,
                                                               kel_lon_max)
            prev_diff.append(p_diff)
        else:
            prev_diff.append(None)

    def write_forecast_to_raincell_file(output_file_path, alpha):
        with open(output_file_path, 'w') as output_file:
            res_mins = int((t1 - t0).total_seconds() / 60)
            data_hours = int(len(times) + prev_days * 24 * 60 / res_mins)
            start_ts = utils.datetime_utc_to_lk(t0 - dt.timedelta(days=prev_days), shift_mins=30).strftime(
                '%Y-%m-%d %H:%M:%S')
            end_ts = utils.datetime_utc_to_lk(t_end, shift_mins=30).strftime('%Y-%m-%d %H:%M:%S')

            output_file.write("%d %d %s %s\n" % (res_mins, data_hours, start_ts, end_ts))

            for d in range(prev_days):
                for t in range(int(24 * 60 / res_mins)):
                    for point in points:
                        rf_x = np.digitize(point[1], lon_bins)
                        rf_y = np.digitize(point[2], lat_bins)
                        if prev_diff[prev_days - 1 - d] is not None:
                            output_file.write('%d %.1f\n' % (point[0], prev_diff[prev_days - 1 - d][t, rf_y, rf_x]))
                        else:
                            output_file.write('%d %.1f\n' % (point[0], 0))

            for t in range(len(times)):
                for point in points:
                    rf_x = np.digitize(point[1], lon_bins)
                    rf_y = np.digitize(point[2], lat_bins)
                    if t < int(24 * 60 / res_mins):
                        output_file.write('%d %.1f\n' % (point[0], diff[t, rf_y, rf_x] * alpha))
                    else:
                        output_file.write('%d %.1f\n' % (point[0], diff[t, rf_y, rf_x]))

    with TemporaryDirectory(prefix='curw_raincell') as temp_dir:
        raincell_temp = os.path.join(temp_dir, output_prefix + '.DAT')
        write_forecast_to_raincell_file(raincell_temp, 1)

        for target_rf in target_rfs:
            write_forecast_to_raincell_file('%s.%d' % (raincell_temp, target_rf), target_rf / avg_basin_rf)

        utils.create_zip_with_prefix(temp_dir, output_prefix + '.DAT*', os.path.join(temp_dir, output_prefix + '.zip'),
                                     clean_up=True)
        utils.move_files_with_prefix(temp_dir, output_prefix + '.zip', utils.create_dir_if_not_exists(output_dir))
Exemplo n.º 10
0
def run_em_real(wrf_config):
    logging.info('Running em_real...')

    wrf_home = wrf_config.get('wrf_home')
    em_real_dir = utils.get_em_real_dir(wrf_home)
    procs = wrf_config.get('procs')
    run_id = wrf_config.get('run_id')
    output_dir = utils.create_dir_if_not_exists(
        os.path.join(wrf_config.get('nfs_dir'), 'results', run_id, 'wrf'))
    archive_dir = utils.create_dir_if_not_exists(
        os.path.join(wrf_config.get('archive_dir'), 'results', run_id, 'wrf'))

    logging.info('Backup the output dir')
    utils.backup_dir(output_dir)

    logs_dir = utils.create_dir_if_not_exists(os.path.join(output_dir, 'logs'))

    logging.info('Copying metgrid.zip')
    metgrid_dir = os.path.join(wrf_config.get('nfs_dir'), 'metgrid')
    if wrf_config.is_set('wps_run_id'):
        logging.info('wps_run_id is set. Copying metgrid from ' +
                     wrf_config.get('wps_run_id'))
        utils.copy_files_with_prefix(
            metgrid_dir,
            wrf_config.get('wps_run_id') + '_metgrid.zip', em_real_dir)
        metgrid_zip = os.path.join(
            em_real_dir,
            wrf_config.get('wps_run_id') + '_metgrid.zip')
    else:
        utils.copy_files_with_prefix(metgrid_dir,
                                     wrf_config.get('run_id') + '_metgrid.zip',
                                     em_real_dir)
        metgrid_zip = os.path.join(em_real_dir,
                                   wrf_config.get('run_id') + '_metgrid.zip')

    logging.info('Extracting metgrid.zip')
    ZipFile(metgrid_zip, 'r',
            compression=ZIP_DEFLATED).extractall(path=em_real_dir)

    # logs destination: nfs/logs/xxxx/rsl*
    try:
        try:
            logging.info('Starting real.exe')
            utils.run_subprocess(
                'mpirun --allow-run-as-root -np %d ./real.exe' % procs,
                cwd=em_real_dir)
        finally:
            logging.info('Moving Real log files...')
            utils.create_zip_with_prefix(em_real_dir,
                                         'rsl*',
                                         os.path.join(em_real_dir,
                                                      'real_rsl.zip'),
                                         clean_up=True)
            utils.move_files_with_prefix(em_real_dir, 'real_rsl.zip', logs_dir)

        try:
            logging.info('Starting wrf.exe')
            utils.run_subprocess(
                'mpirun --allow-run-as-root -np %d ./wrf.exe' % procs,
                cwd=em_real_dir)
        finally:
            logging.info('Moving WRF log files...')
            utils.create_zip_with_prefix(em_real_dir,
                                         'rsl*',
                                         os.path.join(em_real_dir,
                                                      'wrf_rsl.zip'),
                                         clean_up=True)
            utils.move_files_with_prefix(em_real_dir, 'wrf_rsl.zip', logs_dir)
    finally:
        logging.info('Moving namelist input file')
        utils.move_files_with_prefix(em_real_dir, 'namelist.input', output_dir)

    logging.info('WRF em_real: DONE! Moving data to the output dir')

    logging.info('Extracting rf from domain3')
    d03_nc = glob.glob(os.path.join(em_real_dir, 'wrfout_d03_*'))[0]
    ncks_query = 'ncks -v %s %s %s' % ('RAINC,RAINNC,XLAT,XLONG,Times', d03_nc,
                                       d03_nc + '_rf')
    utils.run_subprocess(ncks_query)

    logging.info('Extracting rf from domain1')
    d01_nc = glob.glob(os.path.join(em_real_dir, 'wrfout_d01_*'))[0]
    ncks_query = 'ncks -v %s %s %s' % ('RAINC,RAINNC,XLAT,XLONG,Times', d01_nc,
                                       d01_nc + '_rf')
    utils.run_subprocess(ncks_query)

    logging.info('Moving data to the output dir')
    utils.move_files_with_prefix(em_real_dir, 'wrfout_d03*_rf', output_dir)
    utils.move_files_with_prefix(em_real_dir, 'wrfout_d01*_rf', output_dir)
    logging.info('Moving data to the archive dir')
    utils.move_files_with_prefix(em_real_dir, 'wrfout_*', archive_dir)

    logging.info('Cleaning up files')
    utils.delete_files_with_prefix(em_real_dir, 'met_em*')
    utils.delete_files_with_prefix(em_real_dir, 'rsl*')
    os.remove(metgrid_zip)
Exemplo n.º 11
0
def run_wps(wrf_config):
    logging.info('Running WPS: START')
    wrf_home = wrf_config.get('wrf_home')
    wps_dir = utils.get_wps_dir(wrf_home)
    output_dir = utils.create_dir_if_not_exists(
        os.path.join(wrf_config.get('nfs_dir'), 'results',
                     wrf_config.get('run_id'), 'wps'))

    logging.info('Backup the output dir')
    utils.backup_dir(output_dir)

    logs_dir = utils.create_dir_if_not_exists(os.path.join(output_dir, 'logs'))

    logging.info('Cleaning up files')
    utils.delete_files_with_prefix(wps_dir, 'FILE:*')
    utils.delete_files_with_prefix(wps_dir, 'PFILE:*')
    utils.delete_files_with_prefix(wps_dir, 'met_em*')

    # Linking VTable
    if not os.path.exists(os.path.join(wps_dir, 'Vtable')):
        logging.info('Creating Vtable symlink')
    os.symlink(os.path.join(wps_dir, 'ungrib/Variable_Tables/Vtable.NAM'),
               os.path.join(wps_dir, 'Vtable'))

    # Running link_grib.csh
    gfs_date, gfs_cycle, start = utils.get_appropriate_gfs_inventory(
        wrf_config)
    dest = utils.get_gfs_data_url_dest_tuple(wrf_config.get('gfs_url'),
                                             wrf_config.get('gfs_inv'),
                                             gfs_date, gfs_cycle, '',
                                             wrf_config.get('gfs_res'),
                                             '')[1].replace('.grb2', '')
    utils.run_subprocess('csh link_grib.csh %s/%s' %
                         (wrf_config.get('gfs_dir'), dest),
                         cwd=wps_dir)

    try:
        # Starting ungrib.exe
        try:
            utils.run_subprocess('./ungrib.exe', cwd=wps_dir)
        finally:
            utils.move_files_with_prefix(wps_dir, 'ungrib.log', logs_dir)

        # Starting geogrid.exe'
        if not check_geogrid_output(wps_dir):
            logging.info('Geogrid output not available')
            try:
                utils.run_subprocess('./geogrid.exe', cwd=wps_dir)
            finally:
                utils.move_files_with_prefix(wps_dir, 'geogrid.log', logs_dir)

        # Starting metgrid.exe'
        try:
            utils.run_subprocess('./metgrid.exe', cwd=wps_dir)
        finally:
            utils.move_files_with_prefix(wps_dir, 'metgrid.log', logs_dir)
    finally:
        logging.info('Moving namelist wps file')
        utils.move_files_with_prefix(wps_dir, 'namelist.wps', output_dir)

    logging.info('Running WPS: DONE')

    logging.info('Zipping metgrid data')
    metgrid_zip = os.path.join(wps_dir,
                               wrf_config.get('run_id') + '_metgrid.zip')
    utils.create_zip_with_prefix(wps_dir, 'met_em.d*', metgrid_zip)

    logging.info('Moving metgrid data')
    dest_dir = os.path.join(wrf_config.get('nfs_dir'), 'metgrid')
    utils.move_files_with_prefix(wps_dir, metgrid_zip, dest_dir)
Exemplo n.º 12
0
    def process(self, *args, **kwargs):
        config = self.get_config(**kwargs)
        logging.info('wrf conifg: ' + config.to_json_string())

        start_date = config.get('start_date')
        d03_dir = config.get('wrf_output_dir')
        d03_sl = os.path.join(d03_dir, 'wrfout_d03_' + start_date + ':00_SL')

        # create a temp work dir & get a local copy of the d03.._SL
        temp_dir = utils.create_dir_if_not_exists(
            os.path.join(config.get('wrf_home'), 'temp'))
        shutil.copy2(d03_sl, temp_dir)

        d03_sl = os.path.join(temp_dir, os.path.basename(d03_sl))

        lat_min = 5.722969
        lon_min = 79.52146
        lat_max = 10.06425
        lon_max = 82.18992

        variables = ext_utils.extract_variables(d03_sl, 'RAINC, RAINNC',
                                                lat_min, lat_max, lon_min,
                                                lon_max)

        lats = variables['XLAT']
        lons = variables['XLONG']

        # cell size is calc based on the mean between the lat and lon points
        cz = np.round(
            np.mean(
                np.append(lons[1:len(lons)] - lons[0:len(lons) - 1],
                          lats[1:len(lats)] - lats[0:len(lats) - 1])), 3)
        # clevs = 10 * np.array([0.1, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30])
        # clevs_cum = 10 * np.array([0.1, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 75, 100])
        # norm = colors.BoundaryNorm(boundaries=clevs, ncolors=256)
        # norm_cum = colors.BoundaryNorm(boundaries=clevs_cum, ncolors=256)
        # cmap = plt.get_cmap('jet')

        clevs = [
            0, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 250,
            300, 400, 500, 600, 750
        ]
        clevs_cum = clevs
        norm = None
        norm_cum = None
        cmap = cm.s3pcpn

        basemap = Basemap(projection='merc',
                          llcrnrlon=lon_min,
                          llcrnrlat=lat_min,
                          urcrnrlon=lon_max,
                          urcrnrlat=lat_max,
                          resolution='h')

        filter_threshold = 0.05
        data = variables['RAINC'] + variables['RAINNC']
        logging.info('Filtering with the threshold %f' % filter_threshold)
        data[data < filter_threshold] = 0.0
        variables['PRECIP'] = data

        pngs = []
        ascs = []

        for i in range(1, len(variables['Times'])):
            time = variables['Times'][i]
            ts = dt.datetime.strptime(time, '%Y-%m-%d_%H:%M:%S')
            lk_ts = utils.datetime_utc_to_lk(ts)
            logging.info('processing %s', time)

            # instantaneous precipitation (hourly)
            inst_precip = variables['PRECIP'][i] - variables['PRECIP'][i - 1]

            inst_file = os.path.join(temp_dir, 'wrf_inst_' + time)
            title = {
                'label':
                'Hourly rf for %s LK\n%s UTC' %
                (lk_ts.strftime('%Y-%m-%d_%H:%M:%S'), time),
                'fontsize':
                30
            }

            ext_utils.create_asc_file(np.flip(inst_precip, 0),
                                      lats,
                                      lons,
                                      inst_file + '.asc',
                                      cell_size=cz)
            ascs.append(inst_file + '.asc')

            ext_utils.create_contour_plot(inst_precip,
                                          inst_file + '.png',
                                          lat_min,
                                          lon_min,
                                          lat_max,
                                          lon_max,
                                          title,
                                          clevs=clevs,
                                          cmap=cmap,
                                          basemap=basemap,
                                          norm=norm)
            pngs.append(inst_file + '.png')

            if i % 24 == 0:
                t = 'Daily rf from %s LK to %s LK' % (
                    (lk_ts -
                     dt.timedelta(hours=24)).strftime('%Y-%m-%d_%H:%M:%S'),
                    lk_ts.strftime('%Y-%m-%d_%H:%M:%S'))
                d = int(i / 24) - 1
                logging.info('Creating images for D%d' % d)
                cum_file = os.path.join(temp_dir, 'wrf_cum_%dd' % d)

                ext_utils.create_asc_file(np.flip(variables['PRECIP'][i], 0),
                                          lats,
                                          lons,
                                          cum_file + '.asc',
                                          cell_size=cz)
                ascs.append(cum_file + '.asc')

                ext_utils.create_contour_plot(variables['PRECIP'][i] -
                                              variables['PRECIP'][i - 24],
                                              cum_file + '.png',
                                              lat_min,
                                              lon_min,
                                              lat_max,
                                              lon_max,
                                              t,
                                              clevs=clevs,
                                              cmap=cmap,
                                              basemap=basemap,
                                              norm=norm_cum)
                pngs.append(inst_file + '.png')

                gif_file = os.path.join(temp_dir, 'wrf_inst_%dd' % d)
                images = [
                    os.path.join(
                        temp_dir,
                        'wrf_inst_' + i.strftime('%Y-%m-%d_%H:%M:%S') + '.png')
                    for i in np.arange(ts - dt.timedelta(hours=23), ts +
                                       dt.timedelta(
                                           hours=1), dt.timedelta(
                                               hours=1)).astype(dt.datetime)
                ]
                ext_utils.create_gif(images, gif_file + '.gif')

        logging.info('Creating the zips')
        utils.create_zip_with_prefix(temp_dir, '*.png',
                                     os.path.join(temp_dir, 'pngs.zip'))
        utils.create_zip_with_prefix(temp_dir, '*.asc',
                                     os.path.join(temp_dir, 'ascs.zip'))
        # utils.create_zipfile(pngs, os.path.join(temp_dir, 'pngs.zip'))
        # utils.create_zipfile(ascs, os.path.join(temp_dir, 'ascs.zip'))

        logging.info('Cleaning up instantaneous pngs and ascs - wrf_inst_*')
        utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.png')
        utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.asc')

        logging.info('Copying pngs to ' + d03_dir)
        utils.move_files_with_prefix(temp_dir, '*.png', d03_dir)
        logging.info('Copying ascs to ' + d03_dir)
        utils.move_files_with_prefix(temp_dir, '*.asc', d03_dir)
        logging.info('Copying gifs to ' + d03_dir)
        utils.copy_files_with_prefix(temp_dir, '*.gif', d03_dir)
        logging.info('Copying zips to ' + d03_dir)
        utils.copy_files_with_prefix(temp_dir, '*.zip', d03_dir)

        d03_latest_dir = os.path.join(config.get('nfs_dir'), 'latest',
                                      os.path.basename(config.get('wrf_home')))
        # <nfs>/latest/wrf0 .. 3
        utils.create_dir_if_not_exists(d03_latest_dir)
        # todo: this needs to be adjusted to handle the multiple runs
        logging.info('Copying gifs to ' + d03_latest_dir)
        utils.copy_files_with_prefix(temp_dir, '*.gif', d03_latest_dir)

        logging.info('Cleaning up temp dir')
        shutil.rmtree(temp_dir)