Exemplo n.º 1
0
 def load_model(self, path):
     self.yolo_model = models.load_model(path, compile=False)
     yolov4_output = yolov4_head(self.yolo_model.output, self.num_classes,
                                 self.anchors, self.xyscale)
     self.inference_model = models.Model(
         self.yolo_model.input,
         nms(yolov4_output, self.img_size, self.num_classes
             ))  # [boxes, scores, classes, valid_detections]
Exemplo n.º 2
0
    def build_model(self, load_pretrained=True):
        # core yolo model
        input_layer = layers.Input(self.img_size)
        yolov4_output = yolov4_neck(input_layer, self.num_classes)
        self.yolo_model = models.Model(input_layer, yolov4_output)

        # Build training model
        y_true = [
            layers.Input(name='input_2',
                         shape=(52, 52, 3,
                                (self.num_classes + 5))),  # label small boxes
            layers.Input(name='input_3',
                         shape=(26, 26, 3,
                                (self.num_classes + 5))),  # label medium boxes
            layers.Input(name='input_4',
                         shape=(13, 13, 3,
                                (self.num_classes + 5))),  # label large boxes
            layers.Input(name='input_5',
                         shape=(self.max_boxes, 4)),  # true bboxes
        ]
        loss_list = tf.keras.layers.Lambda(
            yolo_loss,
            name='yolo_loss',
            arguments={
                'num_classes': self.num_classes,
                'iou_loss_thresh': self.iou_loss_thresh,
                'anchors': self.anchors
            })([*self.yolo_model.output, *y_true])
        self.training_model = models.Model([self.yolo_model.input, *y_true],
                                           loss_list)

        # Build inference model
        yolov4_output = yolov4_head(yolov4_output, self.num_classes,
                                    self.anchors, self.xyscale)
        # output: [boxes, scores, classes, valid_detections]
        self.inference_model = models.Model(
            input_layer,
            nms(yolov4_output,
                self.img_size,
                self.num_classes,
                iou_threshold=self.config['iou_threshold'],
                score_threshold=self.config['score_threshold']))

        if load_pretrained and self.weight_path and self.weight_path.endswith(
                '.weights'):
            if self.weight_path.endswith('.weights'):
                load_weights(self.yolo_model, self.weight_path)
                print(f'load from {self.weight_path}')
            elif self.weight_path.endswith('.h5'):
                self.training_model.load_weights(self.weight_path)
                print(f'load from {self.weight_path}')

        self.training_model.compile(optimizer=optimizers.Adam(lr=1e-3),
                                    loss={
                                        'yolo_loss':
                                        lambda y_true, y_pred: y_pred
                                    })
Exemplo n.º 3
0
 def predict_nonms(self,
                   img_path,
                   iou_threshold=0.413,
                   score_threshold=0.1):
     raw_img = cv2.imread(img_path)
     print('img shape: ', raw_img.shape)
     img = self.preprocess_img(raw_img)
     imgs = np.expand_dims(img, axis=0)
     yolov4_output = self.yolo_model.predict(imgs)
     output = yolov4_head(yolov4_output, self.num_classes, self.anchors,
                          self.xyscale)
     pred_output = nms(output, self.img_size, self.num_classes,
                       iou_threshold, score_threshold)
     pred_output = [p.numpy() for p in pred_output]
     detections = get_detection_data(img=raw_img,
                                     model_outputs=pred_output,
                                     class_names=self.class_names)
     draw_bbox(raw_img,
               detections,
               cmap=self.class_color,
               random_color=True)
     return detections