Exemplo n.º 1
0
def crop(image, offset, size):
    w, h = size

    # If there will be a border, use CopyMakeBorder.
    # Setting ROI, no border is created and resulting image is smaller
    if offset[0]>0 or \
       offset[1]>0 or \
       offset[0]+cv.GetSize(image)[0]<w or \
       offset[1]+cv.GetSize(image)[1]<h:

        finalImg = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 3)

        # offset may have negative values, if there will be a right/bottom border
        useOffset = (max(0, offset[0]), max(0, offset[1]))

        # Need to crop first as CopyMakeBorder will complain if the source is too big for the destination
        # (The ROI is the opposite of the offset)
        cv.SetImageROI(image, (-offset[0], -offset[1], w, h))

        cv.CopyMakeBorder(image, finalImg, useOffset, GAP_BORDER)

        return finalImg

    else:
        cv.SetImageROI(image, (-offset[0], -offset[1], w, h))
        return image
def size_image(img, imgsize):
    # check if we need to crop out ROI
    roiWidth = img.width
    roiHeight = img.height
    if (img.width > imgsize[1]):
        roiWidth = imgsize[1]

    if (img.height > imgsize[0]):
        roiHeight = imgsize[0]

    roi = (0, 0, roiWidth, roiHeight)
    cv.SetImageROI(img, roi)
    imgTrim = cv.CreateImage((roi[2], roi[3]), img.depth, img.nChannels)
    cv.Copy(img, imgTrim)

    # check if we need to pad
    padSize = 0
    padSize = max(padSize, imgsize[0] - imgTrim.height)
    padSize = max(padSize, imgsize[1] - imgTrim.width)

    if padSize == 0:  # no padding needed
        return imgTrim
    else:
        padSize = int(round((padSize + .5) / 2.))
        # copy make border
        imgPad = cv.CreateImage(
            (imgTrim.width + 2 * padSize, imgTrim.height + 2 * padSize),
            img.depth, img.nChannels)
        cv.CopyMakeBorder(imgTrim, imgPad, (0, 0), 0)
        roi = (0, 0, imgsize[1], imgsize[0])
        cv.SetImageROI(imgPad, roi)
        imgFinal = cv.CreateImage((roi[2], roi[3]), img.depth, img.nChannels)
        cv.Copy(imgPad, imgFinal)
        return imgFinal
Exemplo n.º 3
0
def smoothNoise1(image, bgcolor=255):
    temp = cv.CreateImage((image.width + 2, image.height + 2), image.depth, image.nChannels)
    result = cv.CreateImage(cv.GetSize(image), image.depth, image.nChannels)
    cv.CopyMakeBorder(image, temp, (1, 1), 0, bgcolor)
    for x in xrange(1, image.width + 1):
        for y in xrange(1, image.height + 1):
            if   temp[y + 1, x] == temp[y - 1, x] and temp[y, x] != temp[y + 1, x]:
                result[y - 1, x - 1] = temp[y + 1, x]
            elif temp[y, x + 1] == temp[y, x - 1] and temp[y, x] != temp[y, x + 1]:
                result[y - 1, x - 1] = temp[y, x + 1]
            else:
                result[y - 1, x - 1] = temp[y, x]
    return result
Exemplo n.º 4
0
def smooth_constborder(A, xwin=5, ywin=5, val=0):
    """ Smooths A with a Gaussian kernel (with window size [XWIN,YWIN]),
    handling the borders of A by using VAL as the intensity value used
    for pixels outside of A.
    Input:
        IplImage A:
    Output:
        IplImage A_smoothed. 
    """
    wA, hA = cv.GetSize(A)
    A_big = cv.CreateImage((wA + 2 * xwin, hA + 2 * ywin), A.depth, A.channels)
    # Pass '0' as bordertype due to undocumented OpenCV flag IPL_BORDER_CONSTANT
    # being 0. Wow!
    cv.CopyMakeBorder(A, A_big, (xwin, ywin), 0, val)
    cv.Smooth(A_big, A_big, cv.CV_GAUSSIAN, param1=xwin, param2=ywin)
    cv.SetImageROI(A_big, (xwin, ywin, wA, hA))
    return A_big
Exemplo n.º 5
0
def smooth(I, xwin, ywin, bordertype=None, val=255.0):
    """ Apply a gaussian blur to I, with window size [XWIN,YWIN].
    If BORDERTYPE is 'const', then treat pixels that lie outside of I as
    VAL (rather than what OpenCV defaults to).
    Input:
        IplImage I:
    """
    w, h = cv.GetSize(I)
    if bordertype == 'const':
        Ibig = cv.CreateImage((w + 2 * xwin, h + 2 * ywin), I.depth,
                              I.channels)
        cv.CopyMakeBorder(I, Ibig, (xwin, ywin), 0, value=val)
        cv.SetImageROI(Ibig, (xwin, ywin, w, h))
    else:
        Ibig = I
    Iout = cv.CreateImage((w, h), I.depth, I.channels)
    cv.Smooth(Ibig, Iout, cv.CV_GAUSSIAN, param1=xwin, param2=ywin)
    return Iout
Exemplo n.º 6
0
def smoothNoise2(image):
    b = 2
    temp = cv.CreateImage((image.width + 4, image.height + 4), image.depth,
                          image.nChannels)
    result = cv.CreateImage(cv.GetSize(image), image.depth, image.nChannels)
    # IPL_BORDER_CONSTANT = 0
    # IPL_BORDER_REPLICATE = 1
    cv.CopyMakeBorder(image, temp, (b, b), 0, 255)
    for x in xrange(b, image.width + b):
        for y in xrange(b, image.height + b):
            if   temp[y + 1, x] == temp[y - 1, x] and \
                 temp[y + 2, x] == temp[y - 2, x] and \
                 temp[y + 1, x] == temp[y + 2, x] and \
                 temp[y, x] != temp[y + 1, x]:
                result[y - b, x - b] = temp[y + 1, x]
            elif temp[y, x + 1] == temp[y, x - 1] and \
                 temp[y, x + 2] == temp[y, x - 2] and \
                 temp[y, x + 1] == temp[y, x + 2] and \
                 temp[y, x] != temp[y, x + 1]:
                result[y - b, x - b] = temp[y, x + 1]
            else:
                result[y - b, x - b] = temp[y, x]
    return result
    def opencvSaliency(self, scaledImageGray):

        cvImageGray = cv.CreateMat(scaledImageGray.height,
                                   scaledImageGray.width, cv.CV_32FC1)
        cv.Convert(scaledImageGray, cvImageGray)

        src = cvImageGray
        dftWidth = cv.GetOptimalDFTSize(src.width - 1)
        dftHeight = cv.GetOptimalDFTSize(src.height - 1)

        real = cv.CreateMat(dftHeight, dftWidth, cv.CV_32FC1)
        imaginary = cv.CreateMat(dftHeight, dftWidth, cv.CV_32FC1)
        dft = cv.CreateMat(dftHeight, dftWidth, cv.CV_32FC2)

        tmp = cv.GetSubRect(real, (0, 0, src.width, src.height))
        cv.Copy(src, tmp)
        cv.Zero(imaginary)

        cv.Merge(real, imaginary, None, None, dft)
        # do the fft
        cv.DFT(dft, dft, cv.CV_DXT_FORWARD, src.height)
        cv.Split(dft, real, imaginary, None, None)

        cv.CartToPolar(real, imaginary, real, imaginary, 0)
        cv.Log(real, real)
        filtered = cv.CreateMat(dftHeight, dftWidth, cv.CV_32FC1)
        cv.Copy(real, filtered)
        cv.Smooth(filtered, filtered, cv.CV_BLUR)

        cv.Sub(real, filtered, real, None)
        cv.Exp(real, real)
        cv.PolarToCart(real, imaginary, real, imaginary, 0)
        #cv.PolarToCart( np.ones( shape=(dftHeight,dftWidth), dtype=np.float32 ), imaginary, real, imaginary,0 )

        # do inverse fourier transform
        cv.Merge(real, imaginary, None, None, dft)
        cv.DFT(dft, dft, cv.CV_DXT_INV_SCALE, src.height)
        cv.Split(dft, real, imaginary, None, None)

        # get magnitude
        cv.CartToPolar(real, imaginary, real, None, 0)
        cv.Pow(real, real, 2.0)

        FILTER_RAD = 3
        IPL_BORDER_CONSTANT = 0

        sfiltered = cv.CreateMat(real.height + FILTER_RAD * 2,
                                 real.width + FILTER_RAD * 2, cv.CV_32FC1)
        cv.CopyMakeBorder(real, sfiltered, (FILTER_RAD, FILTER_RAD),
                          IPL_BORDER_CONSTANT)

        cv.Smooth(sfiltered, sfiltered, cv.CV_GAUSSIAN, 2 * FILTER_RAD + 1)

        (min, max, minLoc, maxLoc) = cv.MinMaxLoc(sfiltered)
        cv.ConvertScale(sfiltered, sfiltered, 1 / (max - min),
                        -min / (max - min))

        # copy result to output image
        tmp = cv.GetSubRect(sfiltered,
                            (FILTER_RAD, FILTER_RAD, src.width, src.height))
        cv.Copy(tmp, cvImageGray)

        #cvReleaseMat(&sfiltered);
        #cvReleaseMat(&real);
        #cvReleaseMat(&filtered);
        #cvReleaseMat(&imaginary);
        #cvReleaseMat(&dft);

        saliencyMap = np.array(255.0 * np.array(cvImageGray), dtype=np.uint8)
        return saliencyMap
Exemplo n.º 8
0
def isolate_numbers(image, name='unnamed.jpg'):
    h, w = image.shape

    #MAX_WIDTH = w * 0.33
    raw_im_cv = array2cv(image)

    # Strip the black line on the bottom
    try:
        transposed = zip(*cv2array(raw_im_cv))
        left_col = list(enumerate(reversed(transposed[2])))
        right_col = list(enumerate(reversed(transposed[-2])))

        findit = lambda a: a[0][0] if a[0][1][0] == 255 else findit(a[
            1:])  # It just works!
        h -= max(findit(left_col), findit(right_col))

        cv.SetImageROI(raw_im_cv, (0, 0, w, h))
        raw_im_cv = cv.CloneImage(raw_im_cv)

    except IndexError:
        pass

    im_cv = cv.CreateImage((w + 6, h + 6), 8, 1)
    im_cv_c = cv.CreateImage((w + 6, h + 6), 8, 3)
    cv.Rectangle(im_cv, (0, 0), cv.GetSize(im_cv), cv.CV_RGB(255, 255, 255),
                 cv.CV_FILLED)
    cv.CopyMakeBorder(raw_im_cv, im_cv, (3, 3), 0, (255, 255, 255))
    cv.CvtColor(im_cv, im_cv_c, cv.CV_GRAY2RGB)

    storage = cv.CreateMemStorage()
    contours = cv.FindContours(im_cv,
                               storage,
                               mode=cv.CV_RETR_LIST,
                               method=cv.CV_CHAIN_APPROX_NONE,
                               offset=(0, 0))
    if not contours:
        return None

    else:
        cv.DrawContours(im_cv, contours, (0, 0, 0), (0, 0, 0), 7, -1)

        rects = []
        i = -1
        while contours:
            i += 1

            storage2 = cv.CreateMemStorage(0)
            hull = cv.ConvexHull2(contours, storage2, cv.CV_CLOCKWISE, 1)
            if hull:
                #cv.PolyLine(im_cv_c, [hull], 1, cv.RGB(0, 255, 0), 4, cv.CV_AA)

                xmax, xmin, ymax, ymin = 0, w, 0, h
                for x, y in list(hull):
                    xmax = max(xmax, x)
                    ymax = max(ymax, y)
                    xmin = min(xmin, x)
                    ymin = min(ymin, y)

                height = (ymax - ymin)
                width = (xmax - xmin)

                if xmin < 5 or width < 50 or height < 50:
                    contours = contours.h_next()
                    continue

                #cv.Rectangle(im_cv_c, (xmin, ymin), (xmax, ymax), cv.RGB(0, 255, 255), 4)

                rects.append((xmin, ymin, xmax, ymax))

            contours = contours.h_next()

        rects = sorted(rects)
        pointer = 0
        while pointer < len(rects) - 1:
            me = rects[pointer]
            you = rects[pointer + 1]
            right = me[2]
            left = you[0]

            if right > left:
                me = (me[0], min(me[1],
                                 you[1]), max(me[2],
                                              you[2]), max(me[3], you[3]))
                rects = rects[:pointer] + [me] + rects[pointer + 2:]

            else:
                pointer += 1

        numbers = []
        #i = 0
        for xmin, ymin, xmax, ymax in rects:
            #cv.Rectangle(im_cv_c, (xmin, ymin), (xmax, ymax), cv.RGB(128, 0, 128), 4)
            cv.SetImageROI(im_cv_c, (xmin, ymin, xmax - xmin, ymax - ymin))

            dst = cv.CreateImage((40, 40), 8, 3)
            cv.Resize(im_cv_c, dst)
            #cv.SaveImage('numbers/' + name.replace('.jpg', '.%d.jpg' % (i,)), dst)

            _, tmp = tempfile.mkstemp('.png')
            cv.SaveImage(tmp, dst)
            dst = cv2.imread(tmp, 0)
            os.unlink(tmp)
            _, bw = cv2.threshold(dst, 80, 255,
                                  cv.CV_THRESH_BINARY + cv.CV_THRESH_OTSU)
            numbers.append(bw)
            #i += 1

        return numbers
Exemplo n.º 9
0
def doCopyMakeBorder(image, border, fillval):
    result = cv.CreateImage(
        (image.width + border * 2, image.height + border * 2), image.depth,
        image.nChannels)
    cv.CopyMakeBorder(image, result, (border, border), 0, fillval)
    return result