Exemplo n.º 1
0
def minmax_cv_V2(imgs,
                 do_align=False,
                 rszFac=1.0,
                 trfm_type='rigid',
                 minArea=np.power(2, 16)):
    """ Just like minmax_cv(), but accepts a list of cvMat's instead
    of a list of imgpaths. If you're planning on generating overlays
    of tens-of-thousands of images, calling this function might result
    in a gross-amount of memory usage (since this function keeps them
    all in memory at once).
    """
    Imin = cv.CloneImage(imgs[0])
    Imax = cv.CloneImage(Imin)
    #Iref = np.asarray(cv.CloneImage(Imin)) if do_align else None
    Iref = (iplimage2np(cv.CloneImage(Imin)) / 255.0) if do_align else None
    for I in imgs[1:]:
        Iout = matchsize(I, Imax)
        if do_align:
            tmp_np = iplimage2np(cv.CloneImage(Iout)) / 255.0
            H, Ireg, err = imagesAlign(tmp_np,
                                       Iref,
                                       trfm_type=trfm_type,
                                       fillval=0,
                                       rszFac=rszFac,
                                       minArea=minArea)
            Ireg *= 255.0
            Ireg = Ireg.astype('uint8')
            Iout = np2iplimage(Ireg)

        cv.Max(Iout, Imax, Imax)
        cv.Min(Iout, Imin, Imin)
    return Imin, Imax
Exemplo n.º 2
0
def minmax_cv(imgpaths,
              do_align=False,
              rszFac=1.0,
              trfm_type='rigid',
              minArea=np.power(2, 16),
              bbs_map=None,
              imgCache=None):
    """ Generates min/max overlays for IMGPATHS. If DO_ALIGN is
    True, then this also aligns every image to the first image in
    IMGPATHS.
    Input:
        list IMGPATHS: [str imgpath_i, ...]
        bool DO_ALIGN:
        float RSZFAC: Resizing factor for alignment.
        dict BBS_MAP: maps {str imgpath: (x1,y1,x2,y2)}
    Output:
        cvMat minimg, cvMat maximg.
    """
    def load_image(imgpath):
        if imgCache == None:
            return cv.LoadImage(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
        else:
            ((img, imgpath), isHit) = imgCache.load(imgpath)
            return img

    if bbs_map == None:
        bbs_map = {}
    imgpath = imgpaths[0]
    bb0 = bbs_map.get(imgpath, None)
    Imin = load_image(imgpath)
    if bb0:
        coords = (bb0[0], bb0[1], bb0[2] - bb0[0], bb0[3] - bb0[1])
        coords = tuple(map(int, coords))
        cv.SetImageROI(Imin, coords)
    Imax = cv.CloneImage(Imin)

    #Iref = np.asarray(cv.CloneImage(Imin)) if do_align else None
    Iref = (iplimage2np(cv.CloneImage(Imin)) / 255.0) if do_align else None
    for imgpath in imgpaths[1:]:
        I = load_image(imgpath)
        bb = bbs_map.get(imgpath, None)
        if bb:
            bb = tuple(map(int, bb))
            cv.SetImageROI(I, (bb[0], bb[1], bb[2] - bb[0], bb[3] - bb[1]))
        Iout = matchsize(I, Imax)
        if do_align:
            tmp_np = iplimage2np(cv.CloneImage(Iout)) / 255.0
            H, Ireg, err = imagesAlign(tmp_np,
                                       Iref,
                                       trfm_type=trfm_type,
                                       fillval=0,
                                       rszFac=rszFac,
                                       minArea=minArea)
            Ireg *= 255.0
            Ireg = Ireg.astype('uint8')
            Iout = np2iplimage(Ireg)
        cv.Max(Iout, Imax, Imax)
        cv.Min(Iout, Imin, Imin)
    return Imin, Imax
    def getMinValues(self, images):
        """ get min values over the images """

        minImage = cv.CloneImage(images[0])
        for image in images:
            cv.Min(minImage, image, minImage)

        return minImage
Exemplo n.º 4
0
def rgb_min_max_diff_plane(r, g, b, level):
    rg_max = image_empty_clone(r)
    cv.Max(r, g, rg_max)
    rgb_max = image_empty_clone(b)
    cv.Max(rg_max, b, rgb_max)

    rg_min = image_empty_clone(r)
    cv.Min(r, g, rg_min)
    rgb_min = image_empty_clone(b)
    cv.Min(rg_min, b, rgb_min)

    rgb_sub = image_empty_clone(rgb_max)
    cv.Sub(rgb_max, rgb_min, rgb_sub)

    binary = image_empty_clone(r)
    cv.Threshold(rgb_sub, binary, level, 255, cv.CV_THRESH_BINARY)

    return binary
Exemplo n.º 5
0
def minmax_cv_v2(imgpaths,
                 Iref_imP=None,
                 do_align=False,
                 rszFac=1.0,
                 trfm_type='rigid',
                 minArea=np.power(2, 16),
                 bbs_map=None):
    """ Computes the overlays of IMGPATHS, but uses the IREF_IMP as the
    reference image to align against, if DO_ALIGN is True. Mainly a 
    function written for the parallel version (minmax_cv is still fine for
    single-process use).
    """
    bbs_map = {} if bbs_map == None else bbs_map
    if do_align:
        Iref = cv.LoadImage(Iref_imP, cv.CV_LOAD_IMAGE_GRAYSCALE)
        bbRef = bbs_map.get(Iref_imP, None)
        if bbRef:
            coords = tuple(
                map(int, (bbRef[0], bbRef[1], bbRef[2] - bbRef[0],
                          bbRef[3] - bbRef[1])))
            cv.SetImageROI(Iref)
    else:
        Iref = None
    # 0.) Prep first image
    imgpath0 = imgpaths[0]
    Imin = cv.LoadImage(imgpath0, cv.CV_LOAD_IMAGE_GRAYSCALE)
    bb0 = bbs_map.get(imgpath0, None)
    if bb0:
        coords = tuple(
            map(int, (bb0[0], bb0[1], bb0[2] - bb0[0], bb0[3] - bb0[1])))
        cv.SetImageROI(Imin)
    Imax = cv.CloneImage(Imin)
    Iref_np = (iplimage2np(cv.CloneImage(Iref)) / 255.0) if do_align else None
    for imgpath in imgpaths[1:]:
        I = cv.LoadImage(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
        bb = bbs_map.get(imgpath, None)
        if bb:
            bb = tuple(map(int, bb))
            cv.SetImageROI(I, (bb[0], bb[1], bb[2] - bb[0], bb[3] - bb[1]))
        Iout = matchsize(I, Imax)
        if do_align:
            tmp_np = iplimage2np(cv.CloneImage(Iout)) / 255.0
            H, Ireg, err = imagesAlign(tmp_np,
                                       Iref,
                                       trfm_type=type,
                                       fillval=0,
                                       rszFac=rszFac,
                                       minArea=minArea)
            Ireg *= 255.0
            Ireg = Ireg.astype('uint8')
            Iout = np2iplimage(Ireg)
        cv.Max(Iout, Imax, Imax)
        cv.Min(Iout, Imin, Imin)
    return Imin.tostring(), Imax.tostring(), cv.GetSize(Imin)
Exemplo n.º 6
0
def _minmax_combfn(a, b):
    # Unfortunately, things passed to multiprocessing must be pickle'able,
    # but IplImages are /not/ pickle'able. So, I must turn the IplImage into
    # its string (via .tostring()), then re-morph it back into IplImage.
    IminA_str, ImaxA_str, size = a
    IminB_str, ImaxB_str, size = b
    IminB = str2iplimage(IminB_str, size)
    ImaxB = str2iplimage(ImaxB_str, size)
    if IminA_str == None:
        return IminB.tostring(), ImaxB.tostring(), size
    IminA = str2iplimage(IminA_str, size)
    ImaxA = str2iplimage(ImaxA_str, size)
    cv.Min(IminA, IminB, IminB)
    cv.Max(ImaxA, ImaxB, ImaxB)
    return IminB.tostring(), ImaxB.tostring(), size
Exemplo n.º 7
0
def overlay_minmax_cv(imgpaths, do_align=False, rszFac=1.0):
    imgpath = imgpaths[0]
    Imin = cv.LoadImage(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
    Imax = cv.CloneImage(Imin)
    #Iref = np.asarray(cv.CloneImage(Imin)) if do_align else None
    Iref = (iplimage2np(cv.CloneImage(Imin)) / 255.0) if do_align else None
    for imgpath in imgpaths[1:]:
        I = cv.LoadImage(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
        Iout = matchsize(I, Imax)
        if do_align:
            tmp_np = iplimage2np(cv.CloneImage(Iout)) / 255.0
            H, Ireg, err = imagesAlign.imagesAlign(tmp_np,
                                                   Iref,
                                                   fillval=0,
                                                   rszFac=rszFac)
            Ireg *= 255.0
            Ireg = Ireg.astype('uint8')
            Iout = np2iplimage(Ireg)

        cv.Max(Iout, Imax, Imax)
        cv.Min(Iout, Imin, Imin)
    return Imin, Imax
Exemplo n.º 8
0
def main():
    if len(sys.argv) == 1:
        print 'Usage: %s [inputfile]' % sys.argv[0]
        sys.exit(1)

    # initialize window
    cv.NamedWindow('video', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('video', 10, 10)

    cv.NamedWindow('threshold', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('threshold', 10, 500)

    cv.NamedWindow('flow', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('flow', 500, 10)

    cv.NamedWindow('edges', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('edges', 500, 500)

    cv.NamedWindow('combined', cv.CV_WINDOW_AUTOSIZE)
    cv.MoveWindow('combined', 1000, 10)

    capture = cv.CreateFileCapture(sys.argv[1])
    if not capture:
        print 'Error opening capture'
        sys.exit(1)

    # Load bg image
    bg = cv.LoadImage('bg.png')

    # Discard some frames
    for i in xrange(2300):
        cv.GrabFrame(capture)

    frame = cv.QueryFrame(capture)
    frame_size = cv.GetSize(frame)

    # vars for playback
    fps = 25
    play = True
    velx = cv.CreateImage(frame_size, cv.IPL_DEPTH_32F, 1)
    vely = cv.CreateImage(frame_size, cv.IPL_DEPTH_32F, 1)
    combined = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    prev = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    curr = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    frame_sub = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 3)

    edges = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    prev_edges = None
    storage = cv.CreateMemStorage(0)

    blob_mask = cv0.cvCreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    cv0.cvSet(blob_mask, 1)

    hough_in = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 1)
    hough_storage = cv.CreateMat(100, 1, cv.CV_32FC3)
    '''
    cv.CvtColor(frame, prev, cv.CV_BGR2GRAY)
    frame = cv.QueryFrame(capture)
    cv.CvtColor(frame, curr, cv.CV_BGR2GRAY)

    # winSize can't have even numbers
    cv.CalcOpticalFlowLK(prev, curr, (3,3), velx, vely)
    cv.ShowImage('video', frame)
    cv.ShowImage('flow', velx)
    cv.WaitKey(0)
    '''

    while True:

        if play:
            frame = cv.QueryFrame(capture)
            cv.Sub(frame, bg, frame_sub)
            '''#detect people
            found = list(cv.HOGDetectMultiScale(frame, storage, win_stride=(8,8),
                padding=(32,32), scale=1.05, group_threshold=2))
            for r in found:
                (rx, ry), (rw, rh) = r
                tl = (rx + int(rw*0.1), ry + int(rh*0.07))
                br = (rx + int(rw*0.9), ry + int(rh*0.87))
                cv.Rectangle(frame, tl, br, (0, 255, 0), 3)
            '''

            #color thresholding
            hsv = cv.CreateImage(frame_size, cv.IPL_DEPTH_8U, 3)
            cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
            mask = cv.CreateMat(frame_size[1], frame_size[0], cv.CV_8UC1)
            cv.InRangeS(hsv, (0.06 * 256, 0.2 * 256, 0.6 * 256, 0),
                        (0.16 * 256, 1.0 * 256, 1.0 * 256, 0), mask)
            cv.ShowImage('threshold', mask)

            #optical flow method
            # store previous frame
            prev, curr = curr, prev
            # convert next frame to single channel grayscale
            cv.CvtColor(frame_sub, curr, cv.CV_BGR2GRAY)
            #cv.CalcOpticalFlowLK(prev, curr, (3,3), velx, vely)
            #cv.Threshold(velx, velx, 8.0, 0, cv.CV_THRESH_TOZERO)
            cv.CalcOpticalFlowHS(prev, curr, 1, velx, vely, 0.5,
                                 (cv.CV_TERMCRIT_ITER, 10, 0))
            cv.Threshold(velx, velx, 0.5, 0, cv.CV_THRESH_TOZERO)
            cv.Threshold(vely, vely, 0.5, 0, cv.CV_THRESH_TOZERO)
            cv.Erode(
                vely, vely,
                cv.CreateStructuringElementEx(2, 2, 0, 0, cv.CV_SHAPE_ELLIPSE))
            cv.Add(vely, velx, vely)
            cv.ShowImage('flow', vely)

            #edge detection
            cv.Canny(curr, edges, 50, 100)
            cv.Dilate(
                edges, edges,
                cv.CreateStructuringElementEx(7, 7, 0, 0, cv.CV_SHAPE_ELLIPSE))
            cv.ShowImage('edges', edges)

            if prev_edges:
                cv.CalcOpticalFlowHS(prev_edges, edges, 1, velx, vely, 0.5,
                                     (cv.CV_TERMCRIT_ITER, 10, 0))
                cv.Threshold(velx, velx, 0.5, 0, cv.CV_THRESH_TOZERO)
                cv.Threshold(vely, vely, 0.5, 0, cv.CV_THRESH_TOZERO)
                cv.ShowImage('flow', vely)
            prev_edges = edges

            cv.Threshold(vely, combined, 0.5, 255, cv.CV_THRESH_BINARY)
            cv.Min(combined, edges, combined)
            cv.ShowImage('combined', combined)

            # blobs
            myblobs = CBlobResult(edges, blob_mask, 100, False)
            myblobs.filter_blobs(10, 10000)
            blob_count = myblobs.GetNumBlobs()

            for i in range(blob_count):

                my_enumerated_blob = myblobs.GetBlob(i)
                #               print "%d: Area = %d" % (i, my_enumerated_blob.Area())
                my_enumerated_blob.FillBlob(frame,
                                            hsv2rgb(i * 180.0 / blob_count), 0,
                                            0)

            cv.ShowImage('video', frame)
            ''' crashes
            #hough transform on dilated image
            #http://wiki.elphel.com/index.php?
            # title=OpenCV_Tennis_balls_recognizing_tutorial&redirect=no
            cv.Copy(edges, hough_in)
            cv.Smooth(hough_in, hough_in, cv.CV_GAUSSIAN, 15, 15, 0, 0)
            cv.HoughCircles(hough_in, hough_storage, cv.CV_HOUGH_GRADIENT,
                            4, frame_size[1]/10, 100, 40, 0, 0)
            print hough_storage
            '''

        k = cv.WaitKey(1000 / fps)
        if k == 27:  # ESC key
            break
        elif k == 'p':  # play/pause
            play = not play
Exemplo n.º 9
0
def main():
    def isimgext(f):
        return os.path.splitext(f)[1].lower() in ('.png', '.tif', '.tiff',
                                                  '.jpg', '.jpeg')

    args = sys.argv[1:]
    imgsdir = args[0]
    vendor = args[1]
    outdir = args[2]
    try:
        N = int(args[3])
    except:
        N = -1
    if 'align' in args:
        # Align the barcodes when computing Min/Max overlays
        do_align = True
    else:
        do_align = False
    if 'do_cpyimg' in args:
        # Copy the entire images to OUTDIR (don't do this for large N!)
        do_cpyimg = True
    else:
        do_cpyimg = False
    if 'just_grouping' in args:
        # Just compute the barcodes + group, don't compute overlays
        just_grouping = True
    else:
        just_grouping = False
    if args[-2] == 'load':
        grouping = pickle.load(open(args[-1], 'rb'))
    else:
        grouping = None
    do_profile = True if 'profile' in args else False

    imgpaths = []
    cnt = 0
    for dirpath, dirnames, filenames in os.walk(imgsdir):
        for imgname in [f for f in filenames if isimgext(f)]:
            if N > 0 and cnt >= N:
                break
            imgpath = os.path.join(dirpath, imgname)
            imgpaths.append(imgpath)
            cnt += 1
        if N > 0 and cnt >= N:
            break
    print "Starting partition_imgs..."
    t = time.time()
    if do_profile:
        cProfile.runctx('partition_imgs(imgpaths, vendor=vendor)', {}, {
            'imgpaths': imgpaths,
            'vendor': vendor,
            'partition_imgs': partition_imgs
        })
        return
    if grouping == None:
        grouping = partask.do_partask(_do_partition_imgs,
                                      imgpaths,
                                      _args=(vendor, None),
                                      combfn="dict",
                                      N=None)
        try:
            os.makedirs(outdir)
        except:
            pass
        pickle.dump(grouping, open(os.path.join(outdir, 'grouping.p'), 'wb'),
                    pickle.HIGHEST_PROTOCOL)

    dur = time.time() - t
    print "...Finished partition_imgs ({0} s).".format(dur)
    print "    Avg. Time per ballot: {0} s".format(dur / len(imgpaths))

    print "Copying groups to outdir {0}...".format(outdir)
    t = time.time()
    errcount = 0
    for barcodes, group in grouping.iteritems():
        if len(group) == 1:
            errcount += 1 if ("ERR0" in barcodes or "ERR1" in barcodes) else 0
            continue
        elif "ERR0" in barcodes or "ERR1" in barcodes:
            #continue
            errcount += len(group)
            pass
        if just_grouping:
            continue
        bcs = '_'.join([thing for thing in barcodes if type(thing) == str])
        rootdir = os.path.join(outdir, bcs)
        try:
            os.makedirs(rootdir)
        except:
            pass
        Imins = [None for _ in barcodes]
        Imaxes = [None for _ in barcodes]
        Irefs = [None for _ in barcodes]

        for i, (imgpath, isflip, bbs) in enumerate(group):
            if do_cpyimg:
                imgname = os.path.split(imgpath)[1]
                outpath_foo = os.path.join(rootdir, imgname)
                shutil.copy(imgpath, outpath_foo)
            img = cv.LoadImage(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
            if isflip:
                cv.Flip(img, img, flipMode=-1)
            for j, bb in enumerate(bbs):
                outpath = os.path.join(rootdir, str(j),
                                       "{0}_{1}.png".format(i, j))
                try:
                    os.makedirs(os.path.split(outpath)[0])
                except:
                    pass
                x, y, w, h = bb
                cv.SetImageROI(img, (x, y, w, h))
                wbig, hbig = int(round(w * 2.0)), int(round(h * 2.0))
                bcBig = cv.CreateImage((wbig, hbig), img.depth, img.channels)
                cv.Resize(img, bcBig, interpolation=cv.CV_INTER_CUBIC)
                cv.SaveImage(outpath, bcBig)

                if Imins[j] == None:
                    Imins[j] = cv.CloneImage(bcBig)
                    Imaxes[j] = cv.CloneImage(bcBig)
                    if do_align:
                        Irefs[j] = make_overlays.iplimage2np(
                            cv.CloneImage(bcBig)) / 255.0
                else:
                    bcBig_sized = make_overlays.matchsize(bcBig, Imins[j])
                    if do_align:
                        tmp_np = make_overlays.iplimage2np(
                            cv.CloneImage(bcBig_sized)) / 255.0
                        H, Ireg, err = imagesAlign.imagesAlign(tmp_np,
                                                               Irefs[j],
                                                               fillval=0.2,
                                                               rszFac=0.75)
                        Ireg *= 255.0
                        Ireg = Ireg.astype('uint8')
                        bcBig_sized = make_overlays.np2iplimage(Ireg)
                    cv.Min(bcBig_sized, Imins[j], Imins[j])
                    cv.Max(bcBig_sized, Imaxes[j], Imaxes[j])
        for idx, Imin in enumerate(Imins):
            Imax = Imaxes[idx]
            cv.SaveImage(os.path.join(rootdir, "_{0}_minimg.png".format(idx)),
                         Imin)
            cv.SaveImage(os.path.join(rootdir, "_{0}_maximg.png".format(idx)),
                         Imax)

    dur = time.time() - t
    print "...Finished Copying groups to outdir {0} ({1} s).".format(
        outdir, dur)
    print "Number of error ballots:", errcount
    print "Done."