Exemplo n.º 1
0
def backf(hypH, im, found):
    (code,corners,pattern) = found
    persp = cv.CreateMat(3, 3, cv.CV_32FC1)
    fc = [corners[i,0] for i in range(4)]
    cv.GetPerspectiveTransform(fc, sizcorners, persp)
    cc = cv.Reshape(cv.fromarray(numpy.array(sizcorners).astype(numpy.float32)), 2)
    t1 = cv.CreateMat(4, 1, cv.CV_32FC2)
    t2 = cv.CreateMat(4, 1, cv.CV_32FC2)
    _persp = cv.CreateMat(3, 3, cv.CV_32FC1)
    cv.Invert(persp, _persp)
    _hypH = cv.CreateMat(3, 3, cv.CV_32FC1)
    cv.Invert(hypH, _hypH)

    cv.PerspectiveTransform(cc, t1, _hypH)
    cv.PerspectiveTransform(t1, t2, _persp)
    return [t2[i,0] for i in range(4)]
Exemplo n.º 2
0
def backproject_sample_rect(warp_matrix, sample_dims):
    warp_matrix_inv = cv2.invert(warp_matrix)[1]
    #warp_matrix_inv = np.array(warp_matrix_inv)/cv.Get2D(warp_matrix_inv, 2, 2)[0]
    #print warp_matrix_inv
    warp_matrix_inv = cv.fromarray(warp_matrix_inv)
    rectified_shape = np.array((1., 1.))
    width_center = rectified_shape[1] / 2
    sample_dims = [x / 2 for x in sample_dims]

    #roi_bottom = (rectified_shape[0] - neighborhood_length) * np.random.random() + \
    #    neighborhood_length
    roi_bottom = 0.5

    rectified_sample_roi = [
        width_center - sample_dims[0], roi_bottom + sample_dims[1],
        width_center - sample_dims[0], roi_bottom - sample_dims[1],
        width_center + sample_dims[0], roi_bottom - sample_dims[1],
        width_center + sample_dims[0], roi_bottom + sample_dims[1]
    ]
    rectified_sample_roi = np.array(rectified_sample_roi, dtype=np.float32)
    rectified_sample_roi = rectified_sample_roi.reshape((1, 4, 2))
    backprojected_sample_boundary = cv.CreateMat(1, 4, cv.CV_32FC2)
    rectified_sample_roi = cv.fromarray(rectified_sample_roi)
    cv.PerspectiveTransform(rectified_sample_roi,
                            backprojected_sample_boundary, warp_matrix_inv)

    return cvutils.array2point_list(np.array(backprojected_sample_boundary))
Exemplo n.º 3
0
    def localize(self, tags):
        global arr_ball_pos
        tag_positions = Tag_Positions()
        for t in tags.tags:
            current_tag_position = Tag_Position()
            current_tag_position.id = t.id

            #This is all Open CV matrix stuff that is more complicated
            #than it should be.
            a = cv.fromarray(numpy.array([[[float(t.x), float(t.y)]]]))
            b = cv.fromarray(numpy.empty((1, 1, 2)))
            cv.PerspectiveTransform(a, b, self.transform)
            current_tag_position.x = numpy.asarray(b)[0, 0, 0]
            current_tag_position.y = numpy.asarray(b)[0, 0, 1]

            current_tag_position.theta = t.zRot - self.zRot_offset

            #Adjust tag angle based on its position
            current_tag_position.theta += correct(current_tag_position.x,
                                                  current_tag_position.y,
                                                  arr_correct_theta)

            if (current_tag_position.theta < -pi):
                current_tag_position.theta += 2 * pi
            if (current_tag_position.theta > pi):
                current_tag_position.theta -= 2 * pi

            tag_positions.tag_positions.append(current_tag_position)
        for tcache in arr_ball_pos:
            tag_positions.tag_positions.append(tcache)

        self.pub.publish(tag_positions)
Exemplo n.º 4
0
 def transform_pts(self,pts,M): 
     ptMat = cv.CreateMat(len(pts),1,cv.CV_32FC2)
     for i,pt in enumerate(pts):
         ptMat[i,0] = (pt[0],pt[1])
     returnPtMat = cv.CloneMat(ptMat)
     cv.PerspectiveTransform(ptMat,returnPtMat,M)
     return_pts = []
     for i in range(len(pts)):
         return_pts.append(returnPtMat[i,0][:2])
     return return_pts
Exemplo n.º 5
0
 def track_ball(self, blobs):
     global arr_ball_pos
     arr_ball_pos = []
     tag_positions = Tag_Positions()
     for blob in blobs.blobs:
         if (blob.red == 255 and blob.green == 0 and blob.blue == 0
                 and blob.area > area_crit):
             current_tag_position = Tag_Position()
             current_tag_position.id = ball_id
             a = cv.fromarray(
                 numpy.array([[[float(blob.x), float(blob.y)]]]))
             b = cv.fromarray(numpy.empty((1, 1, 2)))
             cv.PerspectiveTransform(a, b, self.transform)
             current_tag_position.x = numpy.asarray(b)[0, 0, 0]
             current_tag_position.y = numpy.asarray(b)[0, 0, 1]
             arr_ball_pos.append(current_tag_position)
Exemplo n.º 6
0
def correct_horizontal_motion(image, prev_trackpts, curr_trackpts, boundary_pts):
    image_boundaries = (1, 1, image.width-2, image.height-2)
    motion_matrix=cv.CreateMat(3, 3, cv.CV_32FC1)
    cv.FindHomography(prev_trackpts, curr_trackpts,
                      motion_matrix,
                      cv.CV_RANSAC, 10)
    boundary_pts = boundary_pts.reshape((1, -1, 2)).astype(np.float32)
    warped_boundary_pts = np.zeros_like(boundary_pts)
    cv.PerspectiveTransform(boundary_pts, warped_boundary_pts, motion_matrix)
    pt11, pt12 = cvutils.line_rectangle_intersection(
        tuple(warped_boundary_pts[0, 0,:]), tuple(warped_boundary_pts[0, 3,:]),
        image_boundaries)
    pt21, pt22 = cvutils.line_rectangle_intersection(
        tuple(warped_boundary_pts[0, 1,:]), tuple(warped_boundary_pts[0, 2,:]),
        image_boundaries)
    
    boundary_pts = cvutils.reorder_boundary_points(np.array((pt11, pt12, pt21, pt22)))
    return boundary_pts.reshape((-1, 2)).astype(np.int), motion_matrix
    def capture(self):
        blank = self.get_picture_of_projection(self.blank_projection)
        positive = self.get_picture_of_projection(
            self.positive_chessboard_projection)
        negative = self.get_picture_of_projection(
            self.negative_chessboard_projection)

        difference = cv.CreateMat(self.camera_info.height,
                                  self.camera_info.width, cv.CV_8UC1)
        cv.Sub(positive, negative, difference)

        cv.NamedWindow("blank", flags=0)
        cv.ShowImage("blank", blank)
        cv.WaitKey(300)

        cv.NamedWindow("difference", flags=0)
        cv.ShowImage("difference", difference)
        cv.WaitKey(300)

        camera_image_points, camera_object_points = detect_chessboard(
            blank, self.printed_chessboard_corners_x,
            self.printed_chessboard_corners_y, self.printed_chessboard_spacing,
            self.printed_chessboard_spacing)
        if camera_image_points is None:
            return False
        cv.UndistortPoints(camera_image_points, camera_image_points,
                           self.camera_model.intrinsicMatrix(),
                           self.camera_model.distortionCoeffs())
        homography = cv.CreateMat(3, 3, cv.CV_32FC1)
        cv.FindHomography(camera_image_points, camera_object_points,
                          homography)
        object_points, dummy = detect_chessboard(
            difference, self.projected_chessboard_corners_x,
            self.projected_chessboard_corners_y, None, None)
        if object_points is None:
            return False
        cv.UndistortPoints(object_points, object_points,
                           self.camera_model.intrinsicMatrix(),
                           self.camera_model.distortionCoeffs())

        cv.PerspectiveTransform(object_points, object_points, homography)

        object_points_3d = cv.CreateMat(
            1, self.projected_chessboard_corners_x *
            self.projected_chessboard_corners_y, cv.CV_32FC3)

        x = cv.CreateMat(
            1, self.projected_chessboard_corners_x *
            self.projected_chessboard_corners_y, cv.CV_32FC1)
        y = cv.CreateMat(
            1, self.projected_chessboard_corners_x *
            self.projected_chessboard_corners_y, cv.CV_32FC1)
        cv.Split(object_points, x, y, None, None)
        z = cv.CreateMat(
            1, self.projected_chessboard_corners_x *
            self.projected_chessboard_corners_y, cv.CV_32FC1)
        cv.SetZero(z)

        cv.Merge(x, y, z, None, object_points_3d)

        self.object_points.append(object_points_3d)
        self.image_points.append(self.get_scene_image_points())
        self.number_of_scenes += 1

        return True
Exemplo n.º 8
0
def refinecorners(im, found):
    """ For a found marker, return the refined corner positions """
    t0 = time.time()
    (code,corners,pattern) = found
    persp = cv.CreateMat(3, 3, cv.CV_32FC1)
    fc = [corners[i,0] for i in range(4)]
    cv.GetPerspectiveTransform(fc, sizcorners, persp)
    cim = cv.CreateMat(siz, siz, cv.CV_8UC1)
    cv.WarpPerspective(im, cim, persp, flags = cv.CV_INTER_LINEAR|cv.CV_WARP_FILL_OUTLIERS, fillval = 255)

    unit = siz / 14.
    hunit = unit / 2
    def nearest1(x, y):
        ix = int((x + hunit) / unit)
        iy = int((y + hunit) / unit)
        if (2 <= ix < 13) and (2 <= iy < 13):
            nx = int(unit * ix)
            ny = int(unit * iy)
            return (nx, ny)
        else:
            return (0,0)

    def nearest(x, y):
        """ Return all grid points within sqrt(2) units of (x,y), closest first """
        close = []
        for ix in range(2, 14):
            for iy in range(2, 14):
                (nx, ny) = (unit * ix, unit * iy)
                d = l2(x, y, nx, ny)
                close.append((d, (nx, ny)))
        return [p for (d,p) in sorted(close) if d < 2*unit*unit]

    corners = strongest(cim)
    pool = [((x,y), nearest(x, y)) for (x, y) in corners]

    ga = dict([(x+y,((x,y),P)) for ((x,y),P) in pool])
    gb = dict([(x-y,((x,y),P)) for ((x,y),P) in pool])
    hyp = [ga[min(ga)], ga[max(ga)],
           gb[min(gb)], gb[max(gb)]]

    aL = [a for (a,bs) in hyp]
    oldcorners = cv.fromarray(numpy.array(corners).astype(numpy.float32))
    oldcorners = cv.Reshape(oldcorners, 2)
    newcorners = cv.CreateMat(len(corners), 1, cv.CV_32FC2)
    best = (9999999, None)
    for bL in itertools.product(*[bs for (a,bs) in hyp]):
        hypH = cv.CreateMat(3, 3, cv.CV_32FC1)
        cv.GetPerspectiveTransform(aL, bL, hypH)
        cv.PerspectiveTransform(oldcorners, newcorners, hypH)
        error = 0
        for i in range(newcorners.rows):
            (x,y) = newcorners[i,0]
            (nx, ny) = nearest1(x, y)
            error += l2(x, y, nx, ny)
        best = min(best, (error, hypH))
        if error < 1000:
            break
    # print "took", time.time() - t0, best[0]
    if best[0] < 2500:
        pose = best[1]
        return backf(pose, im, found)
    else:
        return None