Exemplo n.º 1
0
def Process(image, pos_var, pos_w, pos_phase, pos_psi):
    global kernel_size
    if kernel_size % 2 == 0:
        kernel_size += 1

    kernel = cv.CreateMat(kernel_size, kernel_size, cv.CV_32FC1)
    # kernelimg = cv.CreateImage((kernel_size,kernel_size),cv.IPL_DEPTH_32F,1)
    # big_kernelimg = cv.CreateImage((kernel_size*20,kernel_size*20),cv.IPL_DEPTH_32F,1)
    src = cv.CreateImage((image.width, image.height), cv.IPL_DEPTH_8U, 1)
    src_f = cv.CreateImage((image.width, image.height), cv.IPL_DEPTH_32F, 1)

    # src = image #cv.CvtColor(image,src,cv.CV_BGR2GRAY) #no conversion is needed
    if cv.GetElemType(image) == cv.CV_8UC3:
        cv.CvtColor(image, src, cv.CV_BGR2GRAY)
    else:
        src = image

    cv.ConvertScale(src, src_f, 1.0 / 255, 0)
    dest = cv.CloneImage(src_f)
    dest_mag = cv.CloneImage(src_f)

    var = pos_var / 10.0
    w = pos_w / 10.0
    phase = pos_phase * cv.CV_PI / 180.0
    psi = cv.CV_PI * pos_psi / 180.0

    cv.Zero(kernel)
    for x in range(-kernel_size / 2 + 1, kernel_size / 2 + 1):
        for y in range(-kernel_size / 2 + 1, kernel_size / 2 + 1):
            kernel_val = math.exp(-(
                (x * x) +
                (y * y)) / (2 * var)) * math.cos(w * x * math.cos(phase) +
                                                 w * y * math.sin(phase) + psi)
            cv.Set2D(kernel, y + kernel_size / 2, x + kernel_size / 2,
                     cv.Scalar(kernel_val))
            # cv.Set2D(kernelimg,y+kernel_size/2,x+kernel_size/2,cv.Scalar(kernel_val/2+0.5))
    cv.Filter2D(src_f, dest, kernel, (-1, -1))
    # cv.Resize(kernelimg,big_kernelimg)
    cv.Pow(dest, dest_mag, 2)

    # return (dest_mag, big_kernelimg, dest)
    return (dest_mag, dest)
    # cv.ShowImage("Mag",dest_mag)
    # cv.ShowImage("Kernel",big_kernelimg)
    # cv.ShowImage("Process window",dest)
Exemplo n.º 2
0
def imgCropper1(xmin, xmax, ymin, ymax, image_to_be_resized):
    print type(image_to_be_resized)
    image = np.asarray(image_to_be_resized[:, :])
    print 'after conversion hihihihii', type(image)
    b = cv.CreateMat(image_to_be_resized.shape[0],
                     image_to_be_resized.shape[1], cv.CV_8UC1)
    b = cv.fromarray(image_to_be_resized)
    # image_to_be_resized = cv.fromArray(image_to_be_resized)

    cv.SaveImage('before_cropping.jpg', b)
    img = cv2.imread('Z_Rotated_color_image.jpg')
    crop_color_img = img[ymin:ymax, xmin:xmax]  # changed here
    cropppped = image[ymin:ymax, xmin:xmax]  # changed here
    crop_string = 'Z_Cropped_image'
    crop_img_string = crop_string + '.png'
    cv2.imwrite('Z_Cropped_color_image.png', crop_color_img)
    cv2.imwrite('Z_Cropped_image.png', cropppped)
    return crop_img_string, cropppped, crop_color_img
Exemplo n.º 3
0
def cvShiftDFT(src_arr, dst_arr):

    size = cv.GetSize(src_arr)
    dst_size = cv.GetSize(dst_arr)

    if dst_size != size:
        cv.Error(cv.CV_StsUnmatchedSizes, "cv.ShiftDFT",
                 "Source and Destination arrays must have equal sizes",
                 __FILE__, __LINE__)

    if (src_arr is dst_arr):
        tmp = cv.CreateMat(size[1] / 2, size[0] / 2, cv.GetElemType(src_arr))

    cx = size[0] / 2
    cy = size[1] / 2  # image center

    q1 = cv.GetSubRect(src_arr, (0, 0, cx, cy))
    q2 = cv.GetSubRect(src_arr, (cx, 0, cx, cy))
    q3 = cv.GetSubRect(src_arr, (cx, cy, cx, cy))
    q4 = cv.GetSubRect(src_arr, (0, cy, cx, cy))
    d1 = cv.GetSubRect(src_arr, (0, 0, cx, cy))
    d2 = cv.GetSubRect(src_arr, (cx, 0, cx, cy))
    d3 = cv.GetSubRect(src_arr, (cx, cy, cx, cy))
    d4 = cv.GetSubRect(src_arr, (0, cy, cx, cy))

    if (src_arr is not dst_arr):
        if (not cv.CV_ARE_TYPES_EQ(q1, d1)):
            cv.Error(
                cv.CV_StsUnmatchedFormats, "cv.ShiftDFT",
                "Source and Destination arrays must have the same format",
                __FILE__, __LINE__)

        cv.Copy(q3, d1)
        cv.Copy(q4, d2)
        cv.Copy(q1, d3)
        cv.Copy(q2, d4)

    else:
        cv.Copy(q3, tmp)
        cv.Copy(q1, q3)
        cv.Copy(tmp, q1)
        cv.Copy(q4, tmp)
        cv.Copy(q2, q4)
        cv.Copy(tmp, q2)
Exemplo n.º 4
0
def computeSkewAngle(dilation):
    dilation_copy = dilation.copy()
    contours, hierarchy = cv2.findContours(
        dilation_copy, cv2.RETR_TREE,
        cv2.CHAIN_APPROX_SIMPLE)  # Detect the contours of all objects
    leng = 0
    for i in range(len(contours)):
        #print len(contours[i])
        leng = leng + len(contours[i])

    print leng + 1

    points = []
    pointMat = cv.CreateMat(leng, 1, cv.CV_32SC2)

    try:

        for i in range(len(contours[i])):
            cnt = contours[
                i]  #### check why it is going list out of index  OR EXCEPTION HANDLING ######
            #print cnt
            for i in range(len(cnt)):
                pointMat[i, 0] = tuple(cnt[i][0])
                points.append(tuple(cnt[i][0]))
            #print pointMat

    except:
        print 'Exception raised'
        print "Unexpected error:", sys.exc_info()[0]

    finally:
        print 'Hi'
        box = cv.MinAreaRect2(points)
        box_vtx = [roundxy(p) for p in cv.BoxPoints(box)]
        #box_vtx = [cv.Round(pt[0]), cv.Round(pt[1]) for p in cv.BoxPoints(box)]
        print box[2]
        if box[2] < -45:
            skew_angle = box[2] + 90
        else:
            skew_angle = box[2]

        print 'Skew Angle :  ', skew_angle
    return skew_angle, box_vtx
Exemplo n.º 5
0
	def track_keypoints(self,grey,prev_grey):
		try:
			# we are tracking points between the previous frame and the current frame
			img0,img1 = prev_grey,grey
		
			# reshape the current keypoints into a numpt array required by calcOpticalFlowPyrLK()
			p0 = np.float32([p for p in self.keypoints]).reshape(-1,1,2)
 			
			# calculate the optical flow from the previous frame
			# tp the current frame
			p1,st,err = cv2.calcOpticalFlowPyLK(img0,img1,p0,None,**self.lk.params)
			# do the reverse ca;culation : from the current frame to te previous one
			p0r,st,err = cv2.calcOpticalFlowPyrLK(imag1,imag0,p1,NOne,**self.lk_params)
			# compute the distance between corresponding points in the two flows
			d = abs(p0-p0r).reshape(-1,2).max(-1)
			# if the distance between pairs of points is <1 pixel,set 
			# a value in the 'good' array to True,Otherwise False
			good = d<1
			
			#Initialize a list to hold new keypoints
			new_keypoints = list()
			#cycle through all current and new keypoints and only keep 
 			#those that satisfy the 'good' condition above
			for (x,y),good_flag in zip(p1.reshape(-1,2),good):
				if not good_flag:
					continue
				new_keypoints.append((x,y))
				# Draw the keypoint on the image
				cv2.circle(self.marker_iamge,(x,y),self.feature_size,(0,255,0,0),cv.CV_FILLED,8,0)
 			# set the global keypoint list to the new list
			self.keypoints = new_keypoints
			
			# if we have >6 points,find the best ellipse around them 
			if len(self.keypoints)>6:
				self.keypoints_matrix = cv.CreateMat(1,len(self.keypoints),cv.CV_32sc2)
			i = 0
			for p in self.keypoints:
				cv.Set2D(self.keypoints_matrix,0,i,(int(p[0]),int(p[1])))
					
				i = i+1
				
			track_box = cv.FitEllipse2(self.keypoints_matrix)
		else:
    def cal_fromcorners(self, good):
        """
        :param good: Good corner positions and boards
        :type good: [(corners, ChessboardInfo)]


        """
        boards = [b for (_, b) in good]

        ipts = self.mk_image_points(good)
        opts = self.mk_object_points(boards)
        npts = self.mk_point_counts(boards)

        intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
        if self.calib_flags & cv2.CALIB_RATIONAL_MODEL:
            distortion = cv.CreateMat(8, 1, cv.CV_64FC1)  # rational polynomial
        else:
            distortion = cv.CreateMat(5, 1, cv.CV_64FC1)  # plumb bob
        cv.SetZero(intrinsics)
        cv.SetZero(distortion)
        # If FIX_ASPECT_RATIO flag set, enforce focal lengths have 1/1 ratio
        intrinsics[0, 0] = 1.0
        intrinsics[1, 1] = 1.0
        cv.CalibrateCamera2(opts,
                            ipts,
                            npts,
                            self.size,
                            intrinsics,
                            distortion,
                            cv.CreateMat(len(good), 3, cv.CV_32FC1),
                            cv.CreateMat(len(good), 3, cv.CV_32FC1),
                            flags=self.calib_flags)
        self.intrinsics = intrinsics
        self.distortion = distortion

        # R is identity matrix for monocular calibration
        self.R = cv.CreateMat(3, 3, cv.CV_64FC1)
        cv.SetIdentity(self.R)
        self.P = cv.CreateMat(3, 4, cv.CV_64FC1)
        cv.SetZero(self.P)

        self.mapx = cv.CreateImage(self.size, cv.IPL_DEPTH_32F, 1)
        self.mapy = cv.CreateImage(self.size, cv.IPL_DEPTH_32F, 1)
        self.set_alpha(0.0)
def _get_corners(img, board, refine=True):
    """
    Get corners for a particular chessboard for an image
    """
    w, h = cv.GetSize(img)
    mono = cv.CreateMat(h, w, cv.CV_8UC1)
    cv.CvtColor(img, mono, cv.CV_BGR2GRAY)
    (ok, corners) = cv.FindChessboardCorners(
        mono, (board.n_cols, board.n_rows), cv.CV_CALIB_CB_ADAPTIVE_THRESH
        | cv.CV_CALIB_CB_NORMALIZE_IMAGE | cv2.CALIB_CB_FAST_CHECK)

    # If any corners are within BORDER pixels of the screen edge, reject the detection by setting ok to false
    # NOTE: This may cause problems with very low-resolution cameras, where 8 pixels is a non-negligible fraction
    # of the image size. See http://answers.ros.org/question/3155/how-can-i-calibrate-low-resolution-cameras
    BORDER = 8
    if not all([(BORDER < x < (w - BORDER)) and (BORDER < y < (h - BORDER))
                for (x, y) in corners]):
        ok = False

    if refine and ok:
        # Use a radius of half the minimum distance between corners. This should be large enough to snap to the
        # correct corner, but not so large as to include a wrong corner in the search window.
        min_distance = float("inf")
        for row in range(board.n_rows):
            for col in range(board.n_cols - 1):
                index = row * board.n_rows + col
                min_distance = min(min_distance,
                                   _pdist(corners[index], corners[index + 1]))
        for row in range(board.n_rows - 1):
            for col in range(board.n_cols):
                index = row * board.n_rows + col
                min_distance = min(
                    min_distance,
                    _pdist(corners[index], corners[index + board.n_cols]))
        radius = int(math.ceil(min_distance * 0.5))
        corners = cv.FindCornerSubPix(
            mono, corners, (radius, radius), (-1, -1),
            (cv.CV_TERMCRIT_EPS + cv.CV_TERMCRIT_ITER, 30, 0.1))

    return (ok, corners)
Exemplo n.º 8
0
    def __init__(self, map_name="hall_inria"):
        """ Initialize our interest grid.

            @param y_length:  int, y_length of the grid [m]
            @param x_length:  int, Columns of the grid [m]
            @param origin: tuple (x,y), where it is going to be located the lower-left corner of the image with respect to the grid.
            @param resolution: float, resolution of the grid in [meters/cells]
        """
        """ MEMBERS """

        """ INIT """
        self.__read_map__(map_name) #reads the map and the map metadata

        #The image with the detected goal points
        self.goal_map=cv.CreateMat(self.map_img.height, self.map_img.width, cv.CV_8UC1)
        cv.Set(self.goal_map, 255)



        self.goal_list = []
        self.hough_rho =1 #- self.map_img.height/600#Biggest == more lines
        self.hough_threshold = 10 #Biggest==less lines
        print "An instance of InterestGrid has been created"
Exemplo n.º 9
0
def detect(image):
    image_size = cv.GetSize(image)

    # to grayscale
    grayscale = cv.CreateImage(image_size, 8, 1)
    cv.CvtColor(image, grayscale, cv.CV_RGB2GRAY)

    # equalize
    cv.EqualizeHist(grayscale, grayscale)

    # detections
    faces = cv.HaarDetectObjects(grayscale, cascade, cv.CreateMemStorage(),
                                 1.2, 2, cv.CV_HAAR_DO_CANNY_PRUNING, (15, 15))

    if faces:
        print 'face detected!'
        for faceN, ((x, y, w, h), n) in enumerate(faces):
            y_offset = y - height_offset
            h_expanded = h + expansion
            h_expanded_offset = h_expanded + height_offset
            if y_offset + h_expanded_offset > FRAME_HEIGHT:
                h_expanded_offset = (y_offset +
                                     h_expanded_offset) - FRAME_HEIGHT

            if y_offset < 0:
                y_offset = 0

            windowName = "Face %d" % faceN
            sub = cv.GetSubRect(image, (x, y_offset, w, h_expanded_offset))
            grow = cv.CreateMat(h_expanded * 4, w * 4, cv.CV_8UC3)
            cv.Resize(sub, grow)
            print "Showing for ", windowName
            cv.ShowImage(windowName, grow)
            #                cv.ShowImage("Face at (%d, %d)" % (x, y), grow)
            cv.Rectangle(image,
                         (x, y - height_offset), (x + w, y + h + expansion),
                         cv.RGB(0, 255, 0), 3, 8, 0)
Exemplo n.º 10
0
    def test_2542670(self):
        xys = [(94, 121), (94, 122), (93, 123), (92, 123), (91, 124), (91, 125), (91, 126), (92, 127), (92, 128), (92, 129), (92, 130), (92, 131), (91, 132), (90, 131), (90, 130), (90, 131), (91, 132), (92, 133), (92, 134), (93, 135), (94, 136), (94, 137), (94, 138), (95, 139), (96, 140), (96, 141), (96, 142), (96, 143), (97, 144), (97, 145), (98, 146), (99, 146), (100, 146), (101, 146), (102, 146), (103, 146), (104, 146), (105, 146), (106, 146), (107, 146), (108, 146), (109, 146), (110, 146), (111, 146), (112, 146), (113, 146), (114, 146), (115, 146), (116, 146), (117, 146), (118, 146), (119, 146), (120, 146), (121, 146), (122, 146), (123, 146), (124, 146), (125, 146), (126, 146), (126, 145), (126, 144), (126, 143), (126, 142), (126, 141), (126, 140), (127, 139), (127, 138), (127, 137), (127, 136), (127, 135), (127, 134), (127, 133), (128, 132), (129, 132), (130, 131), (131, 130), (131, 129), (131, 128), (132, 127), (133, 126), (134, 125), (134, 124), (135, 123), (136, 122), (136, 121), (135, 121), (134, 121), (133, 121), (132, 121), (131, 121), (130, 121), (129, 121), (128, 121), (127, 121), (126, 121), (125, 121), (124, 121), (123, 121), (122, 121), (121, 121), (120, 121), (119, 121), (118, 121), (117, 121), (116, 121), (115, 121), (114, 121), (113, 121), (112, 121), (111, 121), (110, 121), (109, 121), (108, 121), (107, 121), (106, 121), (105, 121), (104, 121), (103, 121), (102, 121), (101, 121), (100, 121), (99, 121), (98, 121), (97, 121), (96, 121), (95, 121)]

        #xys = xys[:12] + xys[16:]
        pts = cv.CreateMat(len(xys), 1, cv.CV_32SC2)
        for i,(x,y) in enumerate(xys):
            pts[i,0] = (x, y)
        storage = cv.CreateMemStorage()
        hull = cv.ConvexHull2(pts, storage)
        hullp = cv.ConvexHull2(pts, storage, return_points = 1)
        defects = cv.ConvexityDefects(pts, hull, storage)

        vis = cv.CreateImage((1000,1000), 8, 3)
        x0 = min([x for (x,y) in xys]) - 10
        x1 = max([x for (x,y) in xys]) + 10
        y0 = min([y for (y,y) in xys]) - 10
        y1 = max([y for (y,y) in xys]) + 10
        def xform(pt):
            x,y = pt
            return (1000 * (x - x0) / (x1 - x0),
                    1000 * (y - y0) / (y1 - y0))

        for d in defects[:2]:
            cv.Zero(vis)

            # First draw the defect as a red triangle
            cv.FillConvexPoly(vis, [xform(p) for p in d[:3]], cv.RGB(255,0,0))

            # Draw the convex hull as a thick green line
            for a,b in zip(hullp, hullp[1:]):
                cv.Line(vis, xform(a), xform(b), cv.RGB(0,128,0), 3)

            # Draw the original contour as a white line
            for a,b in zip(xys, xys[1:]):
                cv.Line(vis, xform(a), xform(b), (255,255,255))

            self.snap(vis)
Exemplo n.º 11
0
aperture = 3
k = 0.01
maxStrength = 0.0
threshold = 0.01
nonMaxSize = 3

cv.CornerHarris(im, dst_32f, neighbourhood, aperture, k)

minv, maxv, minl, maxl = cv.MinMaxLoc(dst_32f)

dilated = cv.CloneImage(dst_32f)
cv.Dilate(
    dst_32f, dilated
)  # By this way we are sure that pixel with local max value will not be changed, and all the others will

localMax = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U)
cv.Cmp(
    dst_32f, dilated, localMax, cv.CV_CMP_EQ
)  #compare allow to keep only non modified pixel which are local maximum values which are corners.

threshold = 0.01 * maxv
cv.Threshold(dst_32f, dst_32f, threshold, 255, cv.CV_THRESH_BINARY)

cornerMap = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U)
cv.Convert(dst_32f, cornerMap)  #Convert to make the and
cv.And(cornerMap, localMax, cornerMap)  #Delete all modified pixels

radius = 3
thickness = 2

l = []
Exemplo n.º 12
0
    src = np.array([[225, 0], [545, 44], [0, 398], [450, 480]], np.float32)
    dst = np.array([[0, 0], [image_in.width, image_in.height],
                    [0, image_in.height], [image_in.width, 0]], np.float32)
    retval = cv2.getPerspectiveTransform(src, dst)
    warp = cv2.warpPerspective(image, retval, (cv.GetSize(image_in)))

    output = cv.fromarray(warp)

    return output


orig = cv.QueryFrame(capture)
orig2 = cv.QueryFrame(capture2)
processed = cv.CreateImage((orig.width, orig.height), cv.IPL_DEPTH_8U, 1)
grid = cv.CreateImage((orig.width * 2, orig.height), cv.IPL_DEPTH_8U, 3)
storage = cv.CreateMat(orig.width, 1, cv.CV_32FC3)
s = []

draw_grid(grid)
while True:
    orig = cv.QueryFrame(capture)
    orig2 = cv.QueryFrame(capture2)
    #cv.Normalize(orig)
    # filter for all yellow and blue - everything else is black
    processed = colorFilterCombine(orig, "yellow", "blue", s)

    # Some processing and smoothing for easier circle detection
    cv.Canny(processed, processed, 5, 70, 3)
    cv.Smooth(processed, processed, cv.CV_GAUSSIAN, 7, 7)

    #cv.ShowImage('processed2', processed)
    def store_proba(self, proba):
        # print "Got Image"
        if not self.info:
            return
        # print "Processing"
        self.timestamp = proba.header.stamp
        I = self.br.imgmsg_to_cv(proba, "8UC1")
        self.proba = cv.CloneMat(I)
        cv.Threshold(I, self.proba, 0xFE, 0xFE, cv.CV_THRESH_TRUNC)
        try:
            # (trans,rot) = self.listener.lookupTransform(proba.header.frame_id, '/world', proba.header.stamp)
            self.listener.waitForTransform(proba.header.frame_id,
                                           self.target_frame,
                                           proba.header.stamp,
                                           rospy.Duration(1.0))
            trans = numpy.mat(
                self.listener.asMatrix(self.target_frame, proba.header))
            # print "Transformation"
            # print trans
            dstdir = [trans * v for v in self.dirpts3d]
            # print "Destination dir"
            # print dstdir
            origin = trans * self.origin
            origin = origin / origin[3, 0]
            # origin = numpy.matrix([0.0, 0.0, origin[2,0] / origin[3,0], 1.0]).T
            # print "Origin"
            # print origin

            self.dstpts2d = cv.CreateMat(4, 2, cv.CV_32F)
            for i in range(4):
                self.dstpts2d[i, 0] = self.x_floor + (origin[0, 0] - dstdir[i][
                    0, 0] * origin[2, 0] / dstdir[i][2, 0]) * self.floor_scale
                self.dstpts2d[i, 1] = self.y_floor - (origin[1, 0] - dstdir[i][
                    1, 0] * origin[2, 0] / dstdir[i][2, 0]) * self.floor_scale
            # print numpy.asarray(self.dstpts2d)

            # print "Source points"
            # print numpy.asarray(self.srcpts2d)
            # print "Dest points"
            # print numpy.asarray(self.dstpts2d)
            self.H = cv.CreateMat(3, 3, cv.CV_32F)
            cv.FindHomography(self.srcpts2d, self.dstpts2d, self.H)
            # print "Homography"
            # print numpy.asarray(self.H)

            cv.WarpPerspective(cv.GetSubRect(
                self.proba, (0, self.horizon_offset, self.proba.width,
                             self.proba.height - self.horizon_offset)),
                               self.floor_map,
                               self.H,
                               flags=cv.CV_INTER_NN + cv.CV_WARP_FILL_OUTLIERS,
                               fillval=0xFF)

            msg = self.br.cv_to_imgmsg(self.floor_map)
            msg.header.stamp = proba.header.stamp
            msg.header.frame_id = self.target_frame
            self.pub.publish(msg)
            # print "Publishing image"

        except (tf.LookupException, tf.ConnectivityException,
                tf.ExtrapolationException):
            print "Exception while looking for transform"
            return
Exemplo n.º 14
0
                    max_count=1,
                    #min_edge = 6,
                    #max_edge = int(edge)      # Units of 2 pixels
                )
                if sym:
                    onscreen = [(d / 2 + rect[0] + x, d / 2 + rect[1] + y)
                                for (x, y) in self.dm.stats(1)[1]]
                    found[sym] = onscreen
                else:
                    print "FAILED"
        t_brute = time.time() - started
        print "cull took", t_cull, "brute", t_brute
        return found


bg = cv.CreateMat(1024, 1024, cv.CV_8UC3)
cv.Set(bg, cv.RGB(0, 0, 0))
df = DmtxFinder()

cv.NamedWindow("camera", 1)


def mkdmtx(msg):
    dm_write = DataMatrix()
    dm_write.encode(msg)
    pi = dm_write.image  # .resize((14, 14))
    cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 3)
    cv.SetData(cv_im, pi.tostring())
    return cv_im

    def process_image(self, slider_pos):
        global cimg, source_image1, ellipse_size, maxf, maxs, eoc, lastcx, lastcy, lastr
        """
        This function finds contours, draws them and their approximation by ellipses.
        """
        stor = cv.CreateMemStorage()

        # Create the destination images
        cimg = cv.CloneImage(self.source_image)
        cv.Zero(cimg)
        image02 = cv.CloneImage(self.source_image)
        cv.Zero(image02)
        image04 = cv.CreateImage(cv.GetSize(self.source_image),
                                 cv.IPL_DEPTH_8U, 3)
        cv.Zero(image04)

        # Threshold the source image. This needful for cv.FindContours().
        cv.Threshold(self.source_image, image02, slider_pos, 255,
                     cv.CV_THRESH_BINARY)

        # Find all contours.
        cont = cv.FindContours(image02, stor, cv.CV_RETR_LIST,
                               cv.CV_CHAIN_APPROX_NONE, (0, 0))

        maxf = 0
        maxs = 0
        size1 = 0

        for c in contour_iterator(cont):
            if len(c) > ellipse_size:
                PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
                for (i, (x, y)) in enumerate(c):
                    PointArray2D32f[0, i] = (x, y)

                # Draw the current contour in gray
                gray = cv.CV_RGB(100, 100, 100)
                cv.DrawContours(image04, c, gray, gray, 0, 1, 8, (0, 0))

                if iter == 0:
                    strng = segF + '/' + 'contour1.png'
                    cv.SaveImage(strng, image04)
                color = (255, 255, 255)

                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)

                # Convert ellipse data from float to integer representation.
                center = (cv.Round(center[0]), cv.Round(center[1]))
                size = (cv.Round(size[0] * 0.5), cv.Round(size[1] * 0.5))

                if iter == 1:
                    if size[0] > size[1]:
                        size2 = size[0]
                    else:
                        size2 = size[1]

                    if size2 > size1:
                        size1 = size2
                        size3 = size

                # Fits ellipse to current contour.
                if eoc == 0 and iter == 2:
                    rand_val = abs((lastr - ((size[0] + size[1]) / 2)))
                    if rand_val > 20 and float(max(size[0], size[1])) / float(
                            min(size[0], size[1])) < 1.5:
                        lastcx = center[0]
                        lastcy = center[1]
                        lastr = (size[0] + size[1]) / 2

                    if rand_val > 20 and float(max(size[0], size[1])) / float(
                            min(size[0], size[1])) < 1.4:
                        cv.Ellipse(cimg, center, size, angle, 0, 360, color, 2,
                                   cv.CV_AA, 0)
                        cv.Ellipse(source_image1, center, size, angle, 0, 360,
                                   color, 2, cv.CV_AA, 0)

                elif eoc == 1 and iter == 2:
                    (int, cntr, rad) = cv.MinEnclosingCircle(PointArray2D32f)
                    cntr = (cv.Round(cntr[0]), cv.Round(cntr[1]))
                    rad = (cv.Round(rad))
                    if maxf == 0 and maxs == 0:
                        cv.Circle(cimg, cntr, rad, color, 1, cv.CV_AA, shift=0)
                        cv.Circle(source_image1,
                                  cntr,
                                  rad,
                                  color,
                                  2,
                                  cv.CV_AA,
                                  shift=0)
                        maxf = rad
                    elif (maxf > 0 and maxs == 0) and abs(rad - maxf) > 30:
                        cv.Circle(cimg, cntr, rad, color, 2, cv.CV_AA, shift=0)
                        cv.Circle(source_image1,
                                  cntr,
                                  rad,
                                  color,
                                  2,
                                  cv.CV_AA,
                                  shift=0)
                        maxs = len(c)
        if iter == 1:
            temp3 = 2 * abs(size3[1] - size3[0])
            if (temp3 > 40):
                eoc = 1
Exemplo n.º 16
0
import cv2.cv as cv

capture = cv.CaptureFromCAM(0)

frame1 = cv.QueryFrame(capture)
frame1gray = cv.CreateMat(frame1.height, frame1.width, cv.CV_8U)
cv.CvtColor(frame1, frame1gray, cv.CV_RGB2GRAY)

res = cv.CreateMat(frame1.height, frame1.width, cv.CV_8U)

frame2gray = cv.CreateMat(frame1.height, frame1.width, cv.CV_8U)

w = frame2gray.width
h = frame2gray.height
nb_pixels = frame2gray.width * frame2gray.height

while True:
    frame2 = cv.QueryFrame(capture)
    cv.CvtColor(frame2, frame2gray, cv.CV_RGB2GRAY)

    cv.AbsDiff(frame1gray, frame2gray, res)
    cv.ShowImage("After AbsDiff", res)

    cv.Smooth(res, res, cv.CV_BLUR, 5, 5)
    element = cv.CreateStructuringElementEx(5 * 2 + 1, 5 * 2 + 1, 5, 5,
                                            cv.CV_SHAPE_RECT)
    cv.MorphologyEx(res, res, None, None, cv.CV_MOP_OPEN)
    cv.MorphologyEx(res, res, None, None, cv.CV_MOP_CLOSE)
    cv.Threshold(res, res, 10, 255, cv.CV_THRESH_BINARY_INV)

    cv.ShowImage("Image", frame2)
Exemplo n.º 17
0
 def convertCV32(stacked):
     hist64 = cv.fromarray(stacked)
     hist32 = cv.CreateMat(hist64.rows, hist64.cols, cv.CV_32FC1)
     cv.Convert(hist64, hist32)
     return hist32
Exemplo n.º 18
0
    color_tab = [
        cv.CV_RGB(255, 0, 0),
        cv.CV_RGB(0, 255, 0),
        cv.CV_RGB(100, 100, 255),
        cv.CV_RGB(255, 0, 255),
        cv.CV_RGB(255, 255, 0)
    ]
    img = cv.CreateImage((500, 500), 8, 3)
    rng = cv.RNG(-1)

    cv.NamedWindow("clusters", 1)

    while True:
        cluster_count = randint(2, MAX_CLUSTERS)
        sample_count = randint(1, 1000)
        points = cv.CreateMat(sample_count, 1, cv.CV_32FC2)
        clusters = cv.CreateMat(sample_count, 1, cv.CV_32SC1)

        # generate random sample from multigaussian distribution
        for k in range(cluster_count):
            center = (cv.RandInt(rng) % img.width,
                      cv.RandInt(rng) % img.height)
            first = k * sample_count / cluster_count
            last = sample_count
            if k != cluster_count:
                last = (k + 1) * sample_count / cluster_count

            point_chunk = cv.GetRows(points, first, last)

            cv.RandArr(rng, point_chunk, cv.CV_RAND_NORMAL,
                       cv.Scalar(center[0], center[1], 0, 0),
Exemplo n.º 19
0
    def process_image(self, slider_pos):
        """
        This function finds contours, draws them and their approximation by ellipses.
        """
        use_this = self.source_image
        if self.intensity == False:
            cv.Smooth(self.source_image, self.edge, cv.CV_BLUR, 9, 9, 0)
            cv.Not(self.source_image, self.edge)

            # run the edge dector on gray scale
            cv.Canny(self.source_image, self.edge, slider_pos, slider_pos * 3,
                     3)

            # reset
            cv.SetZero(self.col_edge)

            # copy edge points
            cv.Copy(self.source_color, self.col_edge, self.edge)
            use_this = self.edge

        stor = cv.CreateMemStorage()

        # Create the destination images
        image02 = cv.CloneImage(use_this)
        cv.Zero(image02)
        image04 = cv.CreateImage(cv.GetSize(self.source_image),
                                 cv.IPL_DEPTH_8U, 3)
        cv.Zero(image04)

        # Threshold the source image. This needful for cv.FindContours().
        cv.Threshold(use_this, image02, slider_pos, 255, cv.CV_THRESH_BINARY)

        # Find all contours.
        cont = cv.FindContours(image02, stor, cv.CV_RETR_LIST,
                               cv.CV_CHAIN_APPROX_NONE, (0, 0))

        for c in contour_iterator(cont):
            # Number of points must be more than or equal to 6 for cv.FitEllipse2
            if len(c) >= 6:
                # Copy the contour into an array of (x,y)s
                PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
                for (i, (x, y)) in enumerate(c):
                    PointArray2D32f[0, i] = (x, y)

                # Draw the current contour in gray
                gray = cv.CV_RGB(100, 100, 100)
                cv.DrawContours(image04, c, gray, gray, 0, 1, 8, (0, 0))

                # Fits ellipse to current contour.
                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)

                # Convert ellipse data from float to integer representation.
                center = (cv.Round(center[0]), cv.Round(center[1]))
                size = (cv.Round(size[0] * 0.5), cv.Round(size[1] * 0.5))

                # Draw ellipse in random color
                color = cv.CV_RGB(random.randrange(256), random.randrange(256),
                                  random.randrange(256))
                cv.Ellipse(image04, center, size, angle, 0, 360, color, 2,
                           cv.CV_AA, 0)

        # Show image. HighGUI use.
        cv.ShowImage("Result", image04)
Exemplo n.º 20
0
import numpy as np

capture = cv.CaptureFromFile('data/airport/input.avi')

nbFrames = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_COUNT))
fps = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
wait = int(1 / fps * 1000 / 1)
width = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_WIDTH))
height = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_HEIGHT))

out_foreground = cv2.VideoWriter('data/airport/testfun2.avi', -1, fps,
                                 (height, width))

gray = cv.CreateImage((width, height), cv.IPL_DEPTH_8U, 1)

background = cv.CreateMat(height, width, cv.CV_32F)
backImage = cv.CreateImage((width, height), cv.IPL_DEPTH_8U, 1)
foreground = cv.CreateImage((width, height), cv.IPL_DEPTH_8U, 1)
output = cv.CreateImage((width, height), 8, 1)

begin = True
threshold = 10

for f in xrange(nbFrames):
    frame = cv.QueryFrame(capture)

    out_foreground.write(np.uint8(frame))

    cv.CvtColor(frame, gray, cv.CV_BGR2GRAY)

    if begin:
Exemplo n.º 21
0
 def Cached(self, name, rows, cols, type):
     key = (name, rows, cols)
     if not key in self.cache:
         self.cache[key] = cv.CreateMat(rows, cols, type)
     return self.cache[key]
Exemplo n.º 22
0
import cv2.cv as cv
import math

im = cv.LoadImage("../img/build.png", cv.CV_LOAD_IMAGE_GRAYSCALE)
im2 = cv.CloneImage(im)

# Goodfeatureto track algorithm
eigImage = cv.CreateMat(im.height, im.width, cv.IPL_DEPTH_32F)
tempImage = cv.CloneMat(eigImage)
cornerCount = 500
quality = 0.01
minDistance = 10

corners = cv.GoodFeaturesToTrack(im, eigImage, tempImage, cornerCount, quality,
                                 minDistance)

radius = 3
thickness = 2

for (x, y) in corners:
    cv.Circle(im, (int(x), int(y)), radius, (255, 255, 255), thickness)

cv.ShowImage("GoodfeaturesToTrack", im)

#SURF algorithm
hessthresh = 1500  # 400 500
dsize = 0  # 1
layers = 1  # 3 10

keypoints, descriptors = cv.ExtractSURF(im2, None, cv.CreateMemStorage(),
                                        (dsize, hessthresh, 3, layers))
Exemplo n.º 23
0
def scale_to_recognizer_input_size(image):
    mat = cv.CreateMat(RECOG_SIZE, RECOG_SIZE, cv.CV_8UC1)
    cv.Resize(image, mat)
    return mat
Exemplo n.º 24
0
            # set kalman transition matrix
            kalman.transition_matrix[0, 0] = 1
            kalman.transition_matrix[1, 1] = 1
            kalman.transition_matrix[2, 2] = 1
            kalman.transition_matrix[3, 3] = 1

            # set Kalman Filter
            cv.SetIdentity(kalman.measurement_matrix, cv.RealScalar(1))
            cv.SetIdentity(kalman.process_noise_cov,
                           cv.RealScalar(1e-5))  ## 1e-5
            cv.SetIdentity(kalman.measurement_noise_cov, cv.RealScalar(1e-1))
            cv.SetIdentity(kalman.error_cov_post, cv.RealScalar(0.1))
        else:
            # Kalman prediction with Kalman Correction with the points I have in trajectory_0000.txt
            kalman_prediction = cv.KalmanPredict(kalman)
            rightPoints = cv.CreateMat(2, 1, cv.CV_32FC1)
            rightPoints[0, 0] = x
            rightPoints[1, 0] = y

            kalman.state_pre[0, 0] = x
            kalman.state_pre[1, 0] = y
            kalman.state_pre[2, 0] = 0
            kalman.state_pre[3, 0] = 0

            estimated = cv.KalmanCorrect(kalman, rightPoints)

        i = i + 1
        print str(x) + " - " + str(y)

# Here we do not have more points to apply the Kalman Correct, so I need to predict the points
for i in range(20):
Exemplo n.º 25
0
print E
F = np.load('F.npy')
print "-F:"
print F
R1 = np.array((3, 3))
R2 = np.array((3, 3))
P1 = np.array((3, 4))
P2 = np.array((3, 4))
Q = np.array((4, 4))
cameraMatrix1 = cv.fromarray(cameraMatrix1)
cameraMatrix2 = cv.fromarray(cameraMatrix2)
distCoeffs1 = cv.fromarray(distCoeffs1)
distCoeffs2 = cv.fromarray(distCoeffs2)
R = cv.fromarray(R)
T = cv.fromarray(T)
R1 = cv.CreateMat(3, 3, cv.CV_64FC1)
R2 = cv.CreateMat(3, 3, cv.CV_64FC1)
P1 = cv.CreateMat(3, 4, cv.CV_64FC1)
P2 = cv.CreateMat(3, 4, cv.CV_64FC1)
Q = cv.CreateMat(4, 4, cv.CV_64FC1)
cv.StereoRectify(cameraMatrix1,
                 cameraMatrix2,
                 distCoeffs1,
                 distCoeffs2, (640, 480),
                 R,
                 T,
                 R1,
                 R2,
                 P1,
                 P2,
                 Q=Q)
    def calculate_params(self, file_path):
        global lookupTable
        print "calculating params for the cameras"
        if not os.path.isfile(file_path) and os.access(file_path, os.R_OK):
            print "Either file is missing or is not readable"
            exit(-1)
        stream = open(file_path, "r")
        doc = yaml.load(stream)
        '''
        read from the file the width and the height and asign it to both cameras
        read the distorsion model but assign only pumb_bob because that one is requiered by sptam
        read the distCoeffs for both cameras and assign the lists to the cameras
        read k, make a list of 9 elements with the correct positions out of it and then assign t to both cameras

        Read the extrinsics of both cameras, inverse one of them and calculate the R and t from camera_left to camera_left_to_right


        make everything be a cv matrix
        cv.StereoRectify(K1_mat, K2_mat, distCoeffs1_mat, distCoeffs2_mat, imageSize, R, t_mat, R1, R2, P1, P2,T_disp2depth, flags=cv.CV_CALIB_ZERO_DISPARITY, alpha=-1, newImageSize=(0,0))
        make P1 into a list and assign it as  camera_left.P
        make P2 into a list and assign it as  camera_right.P
        make R1 into a list and assign it as  camera_left.R
        make R2 into a list and assign it as  camera_right.R
        '''

        #width and height
        self.camera_left.width = doc['camera0']['resolution'][0]
        self.camera_left.height = doc['camera0']['resolution'][1]
        self.camera_right.width = doc['camera1']['resolution'][0]
        self.camera_right.height = doc['camera1']['resolution'][1]

        #distortion_model
        self.camera_left.distortion_model = "plumb_bob"
        self.camera_right.distortion_model = "plumb_bob"

        #distortion_coefficients
        self.camera_left.D = doc['camera0']['distortion_coefficients']
        self.camera_right.D = doc['camera1']['distortion_coefficients']

        #K_left
        self.camera_left.K[0] = doc['camera0']['intrinsics'][0]
        self.camera_left.K[1] = 0.0
        self.camera_left.K[2] = doc['camera0']['intrinsics'][2]
        self.camera_left.K[3] = 0.0
        self.camera_left.K[4] = doc['camera0']['intrinsics'][1]
        self.camera_left.K[5] = doc['camera0']['intrinsics'][3]
        self.camera_left.K[6] = 0.0
        self.camera_left.K[7] = 0.0
        self.camera_left.K[8] = 1.0

        #K_right
        self.camera_right.K[0] = doc['camera1']['intrinsics'][0]
        self.camera_right.K[1] = 0.0
        self.camera_right.K[2] = doc['camera1']['intrinsics'][2]
        self.camera_right.K[3] = 0.0
        self.camera_right.K[4] = doc['camera1']['intrinsics'][1]
        self.camera_right.K[5] = doc['camera1']['intrinsics'][3]
        self.camera_right.K[6] = 0.0
        self.camera_right.K[7] = 0.0
        self.camera_right.K[8] = 1.0

        #R and t from camera left to right
        extrinsics_4x4_l = np.array(doc['camera0']['T_BS']['data'])
        extrinsics_left = extrinsics_4x4_l.reshape(4, 4)
        extrinsics_4x4_r = np.array(doc['camera1']['T_BS']['data'])
        extrinsics_right = extrinsics_4x4_r.reshape(4, 4)
        inverse = np.linalg.inv(extrinsics_left)
        camera_left_to_right = np.matrix(inverse) * np.matrix(extrinsics_right)
        camera_left_to_right = camera_left_to_right[0:3, 0:4]
        R = camera_left_to_right[0:3, 0:3]
        t = camera_left_to_right[0:3, 3]

        stream.close()
        #Prepare values for rectifying function calling
        R1 = cv.CreateMat(3, 3, cv.CV_64F)
        R2 = cv.CreateMat(3, 3, cv.CV_64F)
        P1 = cv.CreateMat(3, 4, cv.CV_64F)
        P2 = cv.CreateMat(3, 4, cv.CV_64F)

        K1_arr = np.asarray(self.camera_left.K)
        K1_arr = K1_arr.reshape(3, 3)
        K2_arr = np.asarray(self.camera_right.K)
        K2_arr = K2_arr.reshape(3, 3)
        K1_mat_cont = cv.fromarray(
            cv2.copyMakeBorder(K1_arr, 0, 0, 0, 0, cv2.BORDER_REPLICATE))
        K2_mat_cont = cv.fromarray(
            cv2.copyMakeBorder(K2_arr, 0, 0, 0, 0, cv2.BORDER_REPLICATE))

        distCoeffs1_array = np.matrix(np.array(self.camera_left.D))
        distCoeffs2_array = np.matrix(np.array(self.camera_right.D))
        distCoeffs1_mat_cont = cv.fromarray(
            cv2.copyMakeBorder(distCoeffs1_array, 0, 0, 0, 0,
                               cv2.BORDER_REPLICATE))
        distCoeffs2_mat_cont = cv.fromarray(
            cv2.copyMakeBorder(distCoeffs2_array, 0, 0, 0, 0,
                               cv2.BORDER_REPLICATE))

        R_mat_cont = cv.fromarray(
            cv2.copyMakeBorder(R, 0, 0, 0, 0, cv2.BORDER_REPLICATE))
        t_mat_cont = cv.fromarray(
            cv2.copyMakeBorder(t, 0, 0, 0, 0, cv2.BORDER_REPLICATE))

        imageSize = (self.camera_left.width, self.camera_left.height)
        '''
        t[0,0]=-50.706459062
        t[1,0]=0.15556820057
        t[2,0]=0.00088938278
        '''

        T_disp2depth = cv.CreateMat(4, 4, cv.CV_32F)

        #######################

        cv.StereoRectify(K1_mat_cont,
                         K2_mat_cont,
                         distCoeffs1_mat_cont,
                         distCoeffs2_mat_cont,
                         imageSize,
                         R_mat_cont,
                         t_mat_cont,
                         R1,
                         R2,
                         P1,
                         P2,
                         T_disp2depth,
                         flags=cv.CV_CALIB_ZERO_DISPARITY,
                         alpha=-1,
                         newImageSize=(0, 0))

        lookupTable.rectifiedFocalLen = P1[0, 0]
        lookupTable.rectifiedCenterCol = P1[0, 2]
        lookupTable.rectifiedCenterRow = P1[1, 2]
        #lookupTable.baseline = cv.norm(t_mat);

        cv.InitUndistortRectifyMap(K1_mat_cont, distCoeffs1_mat_cont, R1, P1,
                                   None, None)
        cv.InitUndistortRectifyMap(K2_mat_cont, distCoeffs2_mat_cont, R2, P2,
                                   None, None)

        #Transform R1,R2 and P1 and P2 and put thhem in the cameras
        P1_arr = np.asarray(P1[:, :])
        P1_arr = np.squeeze(np.asarray(P1_arr)).flatten()
        P2_arr = np.asarray(P2[:, :])
        P2_arr = np.squeeze(np.asarray(P2_arr)).flatten()
        R1_arr = np.asarray(R1[:, :])
        R1_arr = np.squeeze(np.asarray(R1_arr)).flatten()
        R2_arr = np.asarray(R2[:, :])
        R2_arr = np.squeeze(np.asarray(R2_arr)).flatten()
        R_id_arr = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]

        self.camera_left.R = R_id_arr
        self.camera_right.R = np.squeeze(np.asarray(R)).flatten()
        self.camera_left.P = P1_arr
        self.camera_right.P = P2_arr

        # Tx = - fx * B
        self.camera_right.P[
            3] = -self.camera_right.P[3] * self.camera_right.K[0]

        print "finished calculating params, we return"
        self.calculated = True
        return
Exemplo n.º 27
0
    def match_template(self, cv_image):
        frame = np.array(cv_image, dtype=np.uint8)
        
        W,H = frame.shape[1], frame.shape[0]
        w,h = self.template.shape[1], self.template.shape[0]
        width = W - w + 1
        height = H - h + 1

        # Make sure that the template image is smaller than the source
        if W < w or H < h:
            rospy.loginfo( "Template image must be smaller than video frame." )
            return False
        
        if frame.dtype != self.template.dtype: 
            rospy.loginfo("Template and video frame must have same depth and number of channels.")
            return False
    
        # Create copies of the images to modify
        frame_copy = frame.copy()
        template_copy = self.template.copy()
        
        # Down pyramid the images
        for k in range(self.numDownPyrs):
            # Start with the source image
            W  = (W  + 1) / 2
            H = (H + 1) / 2
                
            frame_small = np.array([H, W], dtype=frame.dtype)
            frame_small = cv2.pyrDown(frame_copy)
            
#            frame_window = "PyrDown " + str(k)
#            cv.NamedWindow(frame_window, cv.CV_NORMAL)
#            cv.ShowImage(frame_window, cv.fromarray(frame_small))
#            cv.ResizeWindow(frame_window, 640, 480)
    
            #  Prepare for next loop, if any
            frame_copy = frame_small.copy()
    
            #Next, do the target
            w  = (w  + 1) / 2
            h = (h + 1) / 2
    
            template_small = np.array([h, w], dtype=self.template.dtype)
            template_small = cv2.pyrDown(template_copy)
            
#            template_window = "Template PyrDown " + str(k)
#            cv.NamedWindow(template_window, cv.CV_NORMAL)
#            cv.ShowImage(template_window, cv.fromarray(template_small))
#            cv.ResizeWindow(template_window, 640, 480)
    
            # Prepare for next loop, if any
            template_copy = template_small.copy()
            
        # Perform the match on the shrunken images
        small_frame_width = frame_copy.shape[1]
        small_frame_height = frame_copy.shape[0]
        
        small_template_width = template_copy.shape[1]
        small_template_height = template_copy.shape[0]
    
        result_width = small_frame_width - small_template_width + 1
        result_height = small_frame_height - small_template_height + 1
    
        result_mat = cv.CreateMat(result_height, result_width, cv.CV_32FC1)
        result = np.array(result_mat, dtype = np.float32)

        cv2.matchTemplate(frame_copy, template_copy, cv.CV_TM_CCOEFF_NORMED, result)
        
        cv2.imshow("Result", result)
        
        return (0, 0, 100, 100)
        
#        # Find the best match location
#        (minValue, maxValue, minLoc, maxLoc) = cv2.minMaxLoc(result)
#        
#       # Transform point back to original image
#        target_location = Point()
#        target_location.x, target_location.y = maxLoc
#        
#        return (target_location.x, target_location.y, w, h)
                
        # Find the top match locations
        locations = self.MultipleMaxLoc(result, self.numMaxima)

        foundPointsList = list()
        confidencesList = list()
        
        W,H = frame.shape[1], frame.shape[0]
        w,h = self.template.shape[1], self.template.shape[0]
        
        # Search the large images at the returned locations       
        for currMax in range(self.numMaxima):
            # Transform the point to its corresponding point in the larger image
            #locations[currMax].x *= int(pow(2.0, self.numDownPyrs))
            #locations[currMax].y *= int(pow(2.0, self.numDownPyrs))
            locations[currMax].x += w / 2
            locations[currMax].y += h / 2
    
            searchPoint = locations[currMax]
            
            print "Search Point", searchPoint
    
            # If we are searching for multiple targets and we have found a target or
            # multiple targets, we don't want to search in the same location(s) again
#            if self.findMultipleTargets and len(foundPointsList) != 0:
#                thisTargetFound = False
#                numPoints = len(foundPointsList)
#                
#                for currPoint in range(numPoints):
#                    foundPoint = foundPointsList[currPoint]
#                    if (abs(searchPoint.x - foundPoint.x) <= self.searchExpansion * 2) and (abs(searchPoint.y - foundPoint.y) <= self.searchExpansion * 2):
#                        thisTargetFound = True
#                        break
#    
#                # If the current target has been found, continue onto the next point
#                if thisTargetFound:
#                    continue
    
            # Set the source image's ROI to slightly larger than the target image,
            # centred at the current point
            searchRoi = RegionOfInterest()
            searchRoi.x_offset = searchPoint.x - w / 2 - self.searchExpansion
            searchRoi.y_offset = searchPoint.y - h / 2 - self.searchExpansion
            searchRoi.width = w + self.searchExpansion * 2
            searchRoi.height = h + self.searchExpansion * 2
            
            #print (searchRoi.x_offset, searchRoi.y_offset, searchRoi.width, searchRoi.height)
                
            # Make sure ROI doesn't extend outside of image
            if searchRoi.x_offset < 0: 
                searchRoi.x_offset = 0

            if searchRoi.y_offset < 0:
                searchRoi.y_offset = 0

            if (searchRoi.x_offset + searchRoi.width) > (W - 1):
                numPixelsOver = (searchRoi.x_offset + searchRoi.width) - (W - 1)
                print "NUM PIXELS OVER", numPixelsOver
                searchRoi.width -= numPixelsOver
    
            if (searchRoi.y_offset + searchRoi.height) > (H - 1):
                numPixelsOver = (searchRoi.y_offset + searchRoi.height) - (H - 1)
                searchRoi.height -= numPixelsOver
                
            mask = (searchRoi.x_offset, searchRoi.y_offset, searchRoi.width, searchRoi.height)
    
            frame_mat = cv.fromarray(frame)
        
            searchImage = cv.CreateMat(searchRoi.height, searchRoi.width, cv.CV_8UC3)
            searchImage = cv.GetSubRect(frame_mat, mask)
            searchArray = np.array(searchImage, dtype=np.uint8)
                       
            # Perform the search on the large images
            result_width = searchRoi.width - w + 1
            result_height = searchRoi.height - h + 1
    
            result_mat = cv.CreateMat(result_height, result_width, cv.CV_32FC1)
            result = np.array(result_mat, dtype = np.float32)
            
            cv2.matchTemplate(searchArray, self.template, cv.CV_TM_CCOEFF_NORMED, result)
    
            # Find the best match location
            (minValue, maxValue, minLoc, maxLoc) = cv2.minMaxLoc(result)

            maxValue *= 100
    
            # Transform point back to original image
            target_location = Point()
            target_location.x, target_location.y = maxLoc
            target_location.x += searchRoi.x_offset - w / 2 + self.searchExpansion
            target_location.y += searchRoi.y_offset - h / 2 + self.searchExpansion
    
            if maxValue >= self.matchPercentage:
                # Add the point to the list
                foundPointsList.append(maxLoc)
                confidencesList.append(maxValue)
    
                # If we are only looking for a single target, we have found it, so we
                # can return
                if not self.findMultipleTargets:
                    break
    
        if len(foundPointsList) == 0:
            rospy.loginfo("Target was not found to required confidence")
    
        return (target_location.x, target_location.y, w, h)
Exemplo n.º 28
0
import cv2.cv as cv
import numpy as np
import time

while True:
    for i in range(4000):
        a = cv.CreateImage((1024,1024), cv.IPL_DEPTH_8U, 1)
        b = cv.CreateMat(1024, 1024, cv.CV_8UC1)
        c = cv.CreateMatND([1024,1024], cv.CV_8UC1)
    print "pause..."
Exemplo n.º 29
0
    def match_template(self, frame):
        
        H,W = frame.shape[0], frame.shape[1]
        h,w = self.template.shape[0], self.template.shape[1]

        # Make sure that the template image is smaller than the source
        if W < w or H < h:
            rospy.loginfo( "Template image must be smaller than video frame." )
            return None
        
        if frame.dtype != self.template.dtype: 
            rospy.loginfo("Template and video frame must have same depth and number of channels.")
            return None
        
        # Create a copy of the frame to modify
        frame_copy = frame.copy()
        
        for i in range(self.n_pyr):
            frame_copy = cv2.pyrDown(frame_copy)
            
        template_height, template_width  = self.template.shape[:2]
        
        # Cycle through all scales starting with the last successful scale

        scales = self.scales[self.last_scale:] + self.scales[:self.last_scale - 1]

        # Track which scale and rotation gives the best match
        maxScore = -1
        best_s = 1
        best_r = 0
        best_x = 0
        best_y = 0
        
        for s in self.scales:
            for r in self.rotations:
                # Scale the template by s
                template_copy = cv2.resize(self.template, (int(template_width * s), int(template_height * s)))

                # Rotate the template through r degrees
                rotation_matrix = cv2.getRotationMatrix2D((template_copy.shape[1]/2, template_copy.shape[0]/2), r, 1.0)
                template_copy = cv2.warpAffine(template_copy, rotation_matrix, (template_copy.shape[1], template_copy.shape[0]), borderMode=cv2.BORDER_REPLICATE)
    
                # Use pyrDown() n_pyr times on the scaled and rotated template
                for i in range(self.n_pyr):
                    template_copy = cv2.pyrDown(template_copy)
                
                # Create the results array to be used with matchTempate()
                h,w = template_copy.shape[:2]
                H,W = frame_copy.shape[:2]
                
                result_width = W - w + 1
                result_height = H - h + 1
                
                try:
                    result_mat = cv.CreateMat(result_height, result_width, cv.CV_32FC1)
                    result = np.array(result_mat, dtype = np.float32)
                except:
                    continue
                
                # Run matchTemplate() on the reduced images
                cv2.matchTemplate(frame_copy, template_copy, cv.CV_TM_CCOEFF_NORMED, result)
                
                # Find the maximum value on the result map
                (minValue, maxValue, minLoc, maxLoc) = cv2.minMaxLoc(result)
                
                if maxValue > maxScore:
                    maxScore = maxValue
                    best_x, best_y = maxLoc
                    best_s = s
                    best_r = r
                    best_template = template_copy.copy()
                    self.last_scale = self.scales.index(s)
                    best_result = result.copy()
                
        # Transform back to original image sizes
        best_x *= int(pow(2.0, self.n_pyr))
        best_y *= int(pow(2.0, self.n_pyr))
        h,w = self.template.shape[:2]
        h = int(h * best_s)
        w = int(w * best_s)
        best_result = cv2.resize(best_result, (int(pow(2.0, self.n_pyr)) * best_result.shape[1], int(pow(2.0, self.n_pyr)) * best_result.shape[0]))
        display_result = np.abs(best_result)**3

        cv2.imshow("Result", display_result)
        best_template = cv2.resize(best_template, (int(pow(2.0, self.n_pyr)) * best_template.shape[1], int(pow(2.0, self.n_pyr)) * best_template.shape[0]))
        cv2.imshow("Best Template", best_template)
        
        #match_box = ((best_x + w/2, best_y + h/2), (w, h), -best_r)
        return (best_x, best_y, w, h)
Exemplo n.º 30
0
   (if Kalman filter works correctly,
    the yellow segment should be shorter than the red one).
   Pressing any key (except ESC) will reset the tracking with a different speed.
   Pressing ESC will stop the program.
"""
import urllib2
import cv2.cv as cv
from math import cos, sin, sqrt
import sys

if __name__ == "__main__":
    A = [[1, 1], [0, 1]]

    img = cv.CreateImage((500, 500), 8, 3)
    kalman = cv.CreateKalman(2, 1, 0)
    state = cv.CreateMat(2, 1, cv.CV_32FC1)  # (phi, delta_phi)
    process_noise = cv.CreateMat(2, 1, cv.CV_32FC1)
    measurement = cv.CreateMat(1, 1, cv.CV_32FC1)
    rng = cv.RNG(-1)
    code = -1L

    cv.Zero(measurement)
    cv.NamedWindow("Kalman", 1)

    while True:
        cv.RandArr(rng, state, cv.CV_RAND_NORMAL, cv.RealScalar(0),
                   cv.RealScalar(0.1))

        kalman.transition_matrix[0, 0] = 1
        kalman.transition_matrix[0, 1] = 1
        kalman.transition_matrix[1, 0] = 0