Exemplo n.º 1
0
def findImageContour(img, frame):
    storage = cv.CreateMemStorage()
    cont = cv.FindContours(img, storage, cv.CV_RETR_EXTERNAL,
                           cv.CV_CHAIN_APPROX_NONE, (0, 0))
    max_center = [None, 0]
    for c in contour_iterator(cont):
        # Number of points must be more than or equal to 6 for cv.FitEllipse2
        # Use to set minimum size of object to be tracked.
        if len(c) >= 60:
            # Copy the contour into an array of (x,y)s
            PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
            for (i, (x, y)) in enumerate(c):
                PointArray2D32f[0, i] = (x, y)
                # Fits ellipse to current contour.
                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)
                # Only consider location of biggest contour  -- adapt for multiple object tracking
            if size > max_center[1]:
                max_center[0] = center
                max_center[1] = size
                angle = angle

            if True:
                # Draw the current contour in gray
                gray = cv.CV_RGB(255, 255, 255)
                cv.DrawContours(img, c, gray, gray, 0, 1, 8, (0, 0))

    if max_center[1] > 0:
        # Convert ellipse data from float to integer representation.
        center = (cv.Round(max_center[0][0]), cv.Round(max_center[0][1]))
        size = (cv.Round(max_center[1][0] * 0.5),
                cv.Round(max_center[1][1] * 0.5))
        color = cv.CV_RGB(255, 0, 0)

        cv.Ellipse(frame, center, size, angle, 0, 360, color, 3, cv.CV_AA, 0)
Exemplo n.º 2
0
def detect_and_draw(img, face_cascade):
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    image_scale = img.width / smallwidth

    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)
    # gray = cv.CreateImage((img.width,img.height), 8, 1)
    image_scale = img.width / smallwidth
    # small_img = cv.CreateImage((cv.Round(img.width / image_scale), cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    faces = cv.HaarDetectObjects(small_img, face_cascade,
                                 cv.CreateMemStorage(0), haar_scale,
                                 min_neighbors, haar_flags, min_size)

    if opencv_preview and faces:
        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
            if verbose:
                print "Face at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[
                    1]

    return True if faces else False
Exemplo n.º 3
0
    def detect_face(self, image):
        min_size = (20, 20)
        image_scale = 2
        haar_scale = 1.1
        min_neighbors = 2
        haar_flags = 0

        # Allocate the temporary images
        gray = cv.CreateImage((image.width, image.height), 8, 1)
        smallImage = cv.CreateImage((cv.Round(
            image.width / image_scale), cv.Round(image.height / image_scale)),
                                    8, 1)

        # Convert color input image to grayscale
        cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

        # Scale input image for faster processing
        cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

        # Equalize the histogram
        cv.EqualizeHist(smallImage, smallImage)

        # Detect the faces
        faces = cv.HaarDetectObjects(smallImage, self.cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)

        return faces
Exemplo n.º 4
0
def detectFace(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage(
        (cv.Round(img.width / imageScale), cv.Round(img.height / imageScale)),
        8, 1)
    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
    cv.EqualizeHist(small_img, small_img)
    faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                 haarScale, minNeighbors, haarFlags, minSize)

    if faces:
        print "\tDetected ", len(faces), " object(s)"
        for ((x, y, w, h), n) in faces:
            #the input to cv.HaarDetectObjects was resized, scale the
            #bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * imageScale), int(y * imageScale))
            pt2 = (int((x + w) * imageScale), int((y + h) * imageScale))
            cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
        return img

    else:
        return False
Exemplo n.º 5
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
                                cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
            haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the 
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    cv.ShowImage("result", img)
Exemplo n.º 6
0
def draw_subdiv_facet(img, edge):

    t = edge
    count = 0

    # count number of edges in facet
    while count == 0 or t != edge:
        count += 1
        t = cv.Subdiv2DGetEdge(t, cv.CV_NEXT_AROUND_LEFT)

    buf = []

    # gather points
    t = edge
    for i in range(count):
        assert t > 4
        pt = cv.Subdiv2DEdgeOrg(t)
        if not pt:
            break
        buf.append((cv.Round(pt.pt[0]), cv.Round(pt.pt[1])))
        t = cv.Subdiv2DGetEdge(t, cv.CV_NEXT_AROUND_LEFT)

    if (len(buf) == count):
        pt = cv.Subdiv2DEdgeDst(cv.Subdiv2DRotateEdge(edge, 1))
        cv.FillConvexPoly(
            img, buf,
            cv.RGB(random.randrange(256), random.randrange(256),
                   random.randrange(256)), cv.CV_AA, 0)
        cv.PolyLine(img, [buf], 1, cv.RGB(0, 0, 0), 1, cv.CV_AA, 0)
        draw_subdiv_point(img, pt.pt, cv.RGB(0, 0, 0))
    def detect_and_draw(self, img, cascade, camera_position=0):
        min_size = (20, 20)
        image_scale = self.horizontalSlider_3.value()
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0
        # allocate temporary images
        gray = cv.CreateImage((img.width, img.height), 8, 1)
        small_img_height = cv.Round(img.height / image_scale)
        small_img = cv.CreateImage(
            (cv.Round(img.width / image_scale), small_img_height), 8, 1)
        # convert color input image to grayscale
        cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
        # scale input image for faster processing
        cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.EqualizeHist(small_img, small_img)

        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        if faces:
            for ((x, y, w, h), n) in faces:
                if self.face_cert < n:
                    x2, y2, w2, h2 = self.make_the_rectangle_bigger(
                        x, y, w, h, 1.22, small_img_height, image_scale)
                    self.create_person_and_add_to_room(img, (x2, y2, w2, h2),
                                                       camera_position)
                    if self.mark_detected_objects[camera_position]:
                        pt2 = (int(x2 + w2), int(y2 + h2))
                        cv.Rectangle(img, (x2, y2), pt2, cv.RGB(255, 0, 0), 3,
                                     8, 0)
        if self.show_main_view[camera_position]:
            cv.ShowImage("result" + str(camera_position), img)
Exemplo n.º 8
0
def detect_and_draw(img, cascade, jpg_cnt):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 10000))
        if faces:
            for ((x, y, w, h), n) in faces:

                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))

                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

                if jpg_cnt % 50 == 1:
                    print('capture completed')
                    cv.SaveImage('test_' + str(jpg_cnt) + '.jpg', img)
                    print("aaa1")
                    url = 'http://210.94.185.52:8080/upload.php'
                    #files={ 'upfiles' : open('/home/lee/test_'+str(jpg_cnt)+'.jpg','rb')}
                    files = {
                        'upfiles':
                        open('/home/lee/test_' + str(jpg_cnt) + '.jpg', 'rb')
                    }
                    print("aaa2")
                    r = requests.post(url, files=files)
                    print("aaa3")
                    print(r.text)
                    for i in r.text.split():
                        try:
                            op = float(i)
                            break
                        except:
                            continue
                    print(op)
                    #LED
                    if op >= 0.9:
                        lock_on()
                    else:
                        print('no')

    cv.ShowImage("result", img)
Exemplo n.º 9
0
def update_mhi(img, dst, diff_threshold):
    global last
    global mhi
    global storage
    global mask
    global orient
    global segmask
    timestamp = time.clock() / CLOCKS_PER_SEC # get current time in seconds
    size = cv.GetSize(img) # get current frame size
    idx1 = last
    if not mhi or cv.GetSize(mhi) != size:
        for i in range(N):
            buf[i] = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
            cv.Zero(buf[i])
        mhi = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        cv.Zero(mhi) # clear MHI at the beginning
        orient = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        segmask = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        mask = cv.CreateImage(size,cv. IPL_DEPTH_8U, 1)

    cv.CvtColor(img, buf[last], cv.CV_BGR2GRAY) # convert frame to grayscale
    idx2 = (last + 1) % N # index of (last - (N-1))th frame
    last = idx2
    silh = buf[idx2]
    cv.AbsDiff(buf[idx1], buf[idx2], silh) # get difference between frames
    cv.Threshold(silh, silh, diff_threshold, 1, cv.CV_THRESH_BINARY) # and threshold it
    cv.UpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION) # update MHI
    cv.CvtScale(mhi, mask, 255./MHI_DURATION,
                (MHI_DURATION - timestamp)*255./MHI_DURATION)
    cv.Zero(dst)
    cv.Merge(mask, None, None, None, dst)
    cv.CalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3)
    if not storage:
        storage = cv.CreateMemStorage(0)
    seq = cv.SegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA)
    for (area, value, comp_rect) in seq:
        if comp_rect[2] + comp_rect[3] > 100: # reject very small components
            color = cv.CV_RGB(255, 0,0)
            silh_roi = cv.GetSubRect(silh, comp_rect)
            mhi_roi = cv.GetSubRect(mhi, comp_rect)
            orient_roi = cv.GetSubRect(orient, comp_rect)
            mask_roi = cv.GetSubRect(mask, comp_rect)
            angle = 360 - cv.CalcGlobalOrientation(orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION)

            count = cv.Norm(silh_roi, None, cv.CV_L1, None) # calculate number of points within silhouette ROI
            if count < (comp_rect[2] * comp_rect[3] * 0.05):
                continue

            magnitude = 30.
            center = ((comp_rect[0] + comp_rect[2] / 2), (comp_rect[1] + comp_rect[3] / 2))
            cv.Circle(dst, center, cv.Round(magnitude*1.2), color, 3, cv.CV_AA, 0)
            cv.Line(dst,
                    center,
                    (cv.Round(center[0] + magnitude * cos(angle * cv.CV_PI / 180)),
                     cv.Round(center[1] - magnitude * sin(angle * cv.CV_PI / 180))),
                    color,
                    3,
                    cv.CV_AA,
                    0)
Exemplo n.º 10
0
def track(img, threshold=100):
    '''Accepts BGR image and optional object threshold between 0 and 255 (default = 100).
       Returns: (x,y) coordinates of centroid if found
                (-1,-1) if no centroid was found
                None if user hit ESC
    '''
    cascade = cv.Load("haarcascade_frontalface_default.xml")
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    center = (-1, -1)
    faces = []
    original_size_faces = []
    #import ipdb; ipdb.set_trace()
    if (cascade):
        t = cv.GetTickCount()
        # HaarDetectObjects takes 0.02s
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                # cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                #cv.Rectangle(img, (x,y), (x+w,y+h), 255)
                # get the xy corner co-ords, calc the center location
                x1 = pt1[0]
                x2 = pt2[0]
                y1 = pt1[1]
                y2 = pt2[1]
                centerx = x1 + ((x2 - x1) / 2)
                centery = y1 + ((y2 - y1) / 2)
                center = (centerx, centery)

                scaled = ((x1, y1, x2 - x1, y2 - y1), n)
                original_size_faces.append(scaled)
                # print scaled


#    cv.NamedWindow(WINDOW_NAME, 1)
#    cv.ShowImage(WINDOW_NAME, img)

#    if cv.WaitKey(5) == 27:
#        center = None
    return (center, original_size_faces)
Exemplo n.º 11
0
def draw_Lines(lines, img):
    for (rho, theta) in lines[:5]:
        a = cos(theta)
        b = sin(theta)
        x0 = a * rho
        y0 = b * rho
        pt1 = (cv.Round(x0 + 1000 * (-b)), cv.Round(y0 + 1000 * (a)))
        pt2 = (cv.Round(x0 - 1000 * (-b)), cv.Round(y0 - 1000 * (a)))
        cv.Line(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8)
Exemplo n.º 12
0
def lines2():
    im = cv.LoadImage('roi_edges.jpg', cv.CV_LOAD_IMAGE_GRAYSCALE)
    pi = math.pi
    x = 0
    dst = cv.CreateImage(cv.GetSize(im), 8, 1)
    cv.Canny(im, dst, 200, 200)
    cv.Threshold(dst, dst, 100, 255, cv.CV_THRESH_BINARY)
    color_dst_standard = cv.CreateImage(cv.GetSize(im), 8, 3)
    cv.CvtColor(im, color_dst_standard,
                cv.CV_GRAY2BGR)  #Create output image in RGB to put red lines
    lines = cv.HoughLines2(dst, cv.CreateMemStorage(0), cv.CV_HOUGH_STANDARD,
                           1, pi / 100, 71, 0, 0)
    klsum = 0
    klaver = 0
    krsum = 0
    kraver = 0

    #global k
    #k=0
    for (rho, theta) in lines[:100]:
        kl = []
        kr = []
        a = math.cos(theta)
        b = math.sin(theta)
        x0 = a * rho
        y0 = b * rho
        pt1 = (cv.Round(x0 + 1000 * (-b)), cv.Round(y0 + 1000 * (a)))
        pt2 = (cv.Round(x0 - 1000 * (-b)), cv.Round(y0 - 1000 * (a)))
        k = ((y0 - 1000 * (a)) - (y0 + 1000 * (a))) / ((x0 - 1000 * (-b)) -
                                                       (x0 + 1000 * (-b)))

        if abs(k) < 0.4:
            pass
        elif k > 0:
            kr.append(k)
            len_kr = len(kr)
            for i in kr:
                krsum = krsum + i
                kraver = krsum / len_kr

                cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2,
                        4)
        elif k < 0:
            kr.append(k)
            kl.append(k)
            len_kl = len(kl)
            for i in kl:
                klsum = klsum + i
                klaver = klsum / len_kl
                cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2,
                        4)
        #print k
    #  cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2, 4)
    cv.SaveImage('lane.jpg', color_dst_standard)
    print '左车道平均斜率:', klaver, '  右车道平均斜率:', kraver
    cv.ShowImage("Hough Standard", color_dst_standard)
    cv.WaitKey(0)
Exemplo n.º 13
0
def DetectRedEyes(image, faceCascade, eyeCascade):
	min_size = (20,20)
	image_scale = 2
	haar_scale = 1.2
	min_neighbors = 2
	haar_flags = 0

	# Allocate the temporary images
	gray = cv.CreateImage((image.width, image.height), 8, 1)
	smallImage = cv.CreateImage((cv.Round(image.width / image_scale),cv.Round (image.height / image_scale)), 8 ,1)

	# Convert color input image to grayscale
	cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

	# Scale input image for faster processing
	cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

	# Equalize the histogram
	cv.EqualizeHist(smallImage, smallImage)

	# Detect the faces
	faces = cv.HaarDetectObjects(smallImage, faceCascade, cv.CreateMemStorage(0),
	haar_scale, min_neighbors, haar_flags, min_size)

	# If faces are found
	if faces:
		for ((x, y, w, h), n) in faces:
		# the input to cv.HaarDetectObjects was resized, so scale the
		# bounding box of each face and convert it to two CvPoints
			pt1 = (int(x * image_scale), int(y * image_scale))
			pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
			cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
			face_region = cv.GetSubRect(image,(x,int(y + (h/4)),w,int(h/2)))

		cv.SetImageROI(image, (pt1[0],
			pt1[1],
			pt2[0] - pt1[0],
			int((pt2[1] - pt1[1]) * 0.7)))
		eyes = cv.HaarDetectObjects(image, eyeCascade,
		cv.CreateMemStorage(0),
		haar_scale, min_neighbors,
		haar_flags, (15,15))	

		if eyes:
			# For each eye found
			for eye in eyes:
				# Draw a rectangle around the eye
				cv.Rectangle(image,
				(eye[0][0],
				eye[0][1]),
				(eye[0][0] + eye[0][2],
				eye[0][1] + eye[0][3]),
				cv.RGB(255, 0, 0), 1, 8, 0)

	cv.ResetImageROI(image)
	return image
Exemplo n.º 14
0
def detect_and_draw(img, cascade, detected):
    # allocate temporary images

    gray = cv.CreateImage((img.width, img.height), 8, 1)
    image_scale = img.width / smallwidth
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        # t = cv.GetTickCount() - t
        # print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        if faces:
            if detected == 0:
                # os.system('festival --tts hi &')
                detected = 1
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                print "Face at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[
                    1]
                # find amount needed to pan/tilt
                span = (pt1[0] + pt2[0]) / 2
                stlt = (pt1[1] + pt2[1]) / 2
                mid = smallwidth / 2
                if span < mid:
                    print "left", mid - span
                else:
                    print "right", span - mid

#os.system('echo "6="' + str(valTilt) + ' > /dev/pi-blaster')
#os.system('echo "7="' + str(valPan) + ' > /dev/pi-blaster')
        else:
            if detected == 1:
                #print "Last seen at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[1]
                #os.system('festival --tts bye &')
                status = "just disappeared"
            detected = 0

    cv.ShowImage("result", img)
    return detected
    def OnPaint(self, evt):
        if not self.timer.IsRunning() :
            dc = wx.BufferedDC(wx.ClientDC(self), wx.NullBitmap, wx.BUFFER_VIRTUAL_AREA)
            dc.SetBackground(wx.Brush(wx.Colour(0, 0, 0)))
            return
            
        # Capture de l'image
        frame = cv.QueryFrame(CAMERA)
        cv.CvtColor(frame, frame, cv.CV_BGR2RGB)
        Img = wx.EmptyImage(frame.width, frame.height)
        Img.SetData(frame.tostring())
        self.bmp = wx.BitmapFromImage(Img)
        width, height = frame.width, frame.height
        
        # Détection des visages
        min_size = (20, 20)
        image_scale = 2
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0

        gray = cv.CreateImage((frame.width, frame.height), 8, 1)
        small_img = cv.CreateImage((cv.Round(frame.width / image_scale), cv.Round (frame.height / image_scale)), 8, 1)
        cv.CvtColor(frame, gray, cv.CV_BGR2GRAY)
        cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.EqualizeHist(small_img, small_img)
        
        listeVisages = cv.HaarDetectObjects(small_img, CASCADE, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, min_size)

        # Affichage de l'image
        x, y = (0, 0)
        try:
            dc = wx.BufferedDC(wx.ClientDC(self), wx.NullBitmap, wx.BUFFER_VIRTUAL_AREA)
            try :
                dc.SetBackground(wx.Brush(wx.Colour(0, 0, 0)))
            except :
                pass
            dc.Clear()
            dc.DrawBitmap(self.bmp, x, y)
            
            # Dessin des rectangles des visages
            if listeVisages :
                for ((x, y, w, h), n) in listeVisages :
                    dc.SetBrush(wx.TRANSPARENT_BRUSH)
                    dc.SetPen(wx.Pen(wx.Colour(255, 0, 0), 2))
                    dc.DrawRectangle(x* image_scale, y* image_scale, w* image_scale, h* image_scale)
            
            self.listeVisages = listeVisages
            del dc
            del Img
            
        except TypeError:
            pass
        except wx.PyDeadObjectError:
            pass
Exemplo n.º 16
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
			       cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        #print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        if faces:
            count = 0
            stop = 1
            name = 1
            no = 1
            dict = {}
            for num in range(14):
                dict[name] = no
                name += 1
            print dict
            f = open('no.json','w')
            json.dump(dict,f)
            #for count in range(14):
            #time.sleep(stop)
                #count += 1
                #print(count)
            #time.sleep(stop)
            #cv.PutText(img, "SAMPLE_TEXT", (0, 50), cv.CV_FONT_HERSHEY_PLAIN, cv.RGB(255, 255, 255))
            #cv.PutText(img, "SAMPLE_TEXT", (0, 50), cv.CV_FONT_HERSHEY_PLAIN, 4, (255, 255, 255), 2, cv.CV_AA )
            for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the 
            # bounding box of each face and convert it to two CvPoints
                #for count in range(14):
                count += 1
                print(count)
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                #count = count + 1
                #print(count)
                # cv.putText(img, "SAMPLE_TEXT", (0, 50), FONT_HERSHEY_PLAIN, 4, (255, 255, 255), 2, cv.CV_AA)


    cv.ShowImage("result", img)
Exemplo n.º 17
0
def detect_and_draw(img, cascade, c):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    face_flag = False

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        if faces:
            face_flag = True
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))

                # ある程度顔が検出されたら
                if c > 4:
                    # 画像の保存
                    global counter
                    counter = -1
                    d = datetime.today()
                    datestr = d.strftime('%Y-%m-%d_%H-%M-%S')
                    outputname = '/home/pi/fd/fd_' + datestr + '.jpg'
                    cv.SaveImage(outputname, img)
                    print 'Face Detect'

                    # 読み込みと切り取り
                    fimg = cv.LoadImage(outputname)
                    fimg_trim = fimg[pt1[1]:pt2[1], pt1[0]:pt2[0]]
                    outputname2 = '/home/pi/fd/face_' + datestr + '.jpg'
                    cv.SaveImage(outputname2, fimg_trim)
                    print 'Face Image Save'

                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    cv.ShowImage("result", img)

    return face_flag
Exemplo n.º 18
0
def DetectRedEyes(image, faceCascade):
    min_size = (20, 20)
    image_scale = 2
    haar_scale = 1.1
    min_neighbors = 2
    haar_flags = 0

    # Allocate the temporary images
    gray = cv.CreateImage((image.width, image.height), 8, 1)
    smallImage = cv.CreateImage((cv.Round(
        image.width / image_scale), cv.Round(image.height / image_scale)), 8,
                                1)

    # Convert color input image to grayscale
    cv.CvtColor(image, gray, cv.CV_BGR2GRAY)

    # Scale input image for faster processing
    cv.Resize(gray, smallImage, cv.CV_INTER_LINEAR)

    # Equalize the histogram
    cv.EqualizeHist(smallImage, smallImage)

    # Detect the faces
    faces = cv.HaarDetectObjects(smallImage, faceCascade,
                                 cv.CreateMemStorage(0), haar_scale,
                                 min_neighbors, haar_flags, min_size)

    # If faces are found
    if faces:

        #print faces

        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            #print "face"
            global line2
            line2 = n
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            # print pt1
            # print pt2
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 1, 8, 0)
            cv.PutText(image, "face" + str(h), pt1, font, cv.RGB(255, 0, 0))
            cv.PutText(image, "Come close.", (0, 20), font, cv.RGB(255, 0, 0))
            cv.PutText(image, "Ensure your forehead is well lit.", (0, 40),
                       font, cv.RGB(255, 0, 0))
            cv.PutText(image, "Hit escape when done.", (0, 60), font,
                       cv.RGB(255, 0, 0))

    cv.ResetImageROI(image)
    return image
Exemplo n.º 19
0
def draw_subdiv_edge(img, edge, color):
    org_pt = cv.Subdiv2DEdgeOrg(edge)
    dst_pt = cv.Subdiv2DEdgeDst(edge)

    if org_pt and dst_pt:

        org = org_pt.pt
        dst = dst_pt.pt

        iorg = (cv.Round(org[0]), cv.Round(org[1]))
        idst = (cv.Round(dst[0]), cv.Round(dst[1]))

        cv.Line(img, iorg, idst, color, 1, cv.CV_AA, 0)
Exemplo n.º 20
0
def detect_and_draw(img, front_cascade, profile_cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
                   cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if(front_cascade):
        # Test for frontal face
        faces = cv.HaarDetectObjects(small_img, front_cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        if faces: # we've detected a face
            return [faces, FRONTAL]

        # Test for profile face
        faces = cv.HaarDetectObjects(small_img, profile_cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)
        if faces: # we've detected a face
            return [faces, PROFILE]

        #t = cv.GetTickCount() - t
        #print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
        #if faces:
            #for ((x, y, w, h), n) in faces:
                ## the input to cv.HaarDetectObjects was resized, so scale the
                ## bounding box of each face and convert it to two CvPoints
                #pt1 = (int(x * image_scale), int(y * image_scale))
                #pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))

                #imgWidth, imgHeight = cv.GetSize(img)
                #croppedX = max(0, x*image_scale-w*image_scale/2) 
                #croppedY = max(0, y*image_scale-h*image_scale/2)
                #croppedW = min(imgWidth, (2*w)*image_scale)
                #croppedH = min(imgHeight, (2*h)*image_scale)

                #imgCropped = cv.CreateImage((croppedW, croppedH), img.depth, img.nChannels)
                #srcRegion = cv.GetSubRect(img, (croppedX, croppedY, croppedW, croppedH))
                #cv.Copy(srcRegion, imgCropped)
                #cv.ShowImage("cropped", imgCropped)

                #cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    return []
Exemplo n.º 21
0
def detect_and_draw(img, cascade):

    # allocate temporary images
    gray = cv.CreateImage((img.width,img.height), 8, 1)

    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
                   cv.Round (img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    #gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    #cv.EqualizeHist(small_img, small_img)

    if(cascade):
        t = cv.GetTickCount()#to get the time, create memory for calculation(createMemStorage)

        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
                                     haar_scale, min_neighbors, haar_flags, min_size)

        t = cv.GetTickCount() - t#previous time minus current time

        #print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))

        roi=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
        ROI=['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','23','24','25','26','27','28','29','30']

        i=0

        if faces:

            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))

                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))

                
                #draw rectangle (imagename,topleft,bottomright,color,size)
                cv.Rectangle(img,pt1,pt2,(0,230,0),1)

                roi[i] = img[y: y + h, x: x + w]

                #cv.ShowImage(ROI[i],roi[i])
                cv.SaveImage("face/temp/"+ROI[i]+".png",roi[i])
                i=i+1;
Exemplo n.º 22
0
    def process_image(self, slider_pos):
        """
        This function finds contours, draws them and their approximation by ellipses.
        """
        stor = cv.CreateMemStorage()

        # Create the destination images
        image02 = cv.CloneImage(self.source_image)
        cv.Zero(image02)
        image04 = cv.CreateImage(cv.GetSize(self.source_image),
                                 cv.IPL_DEPTH_8U, 3)
        cv.Zero(image04)

        # Threshold the source image. This needful for cv.FindContours().
        cv.Threshold(self.source_image, image02, slider_pos, 255,
                     cv.CV_THRESH_BINARY)

        # Find all contours.
        cont = cv.FindContours(image02, stor, cv.CV_RETR_LIST,
                               cv.CV_CHAIN_APPROX_NONE, (0, 0))

        for c in contour_iterator(cont):
            # Number of points must be more than or equal to 6 for cv.FitEllipse2
            if len(c) >= 6:
                # Copy the contour into an array of (x,y)s
                PointArray2D32f = cv.CreateMat(1, len(c), cv.CV_32FC2)
                for (i, (x, y)) in enumerate(c):
                    PointArray2D32f[0, i] = (x, y)

                # Draw the current contour in gray
                gray = cv.CV_RGB(100, 100, 100)
                cv.DrawContours(image04, c, gray, gray, 0, 1, 8, (0, 0))

                # Fits ellipse to current contour.
                (center, size, angle) = cv.FitEllipse2(PointArray2D32f)

                # Convert ellipse data from float to integer representation.
                center = (cv.Round(center[0]), cv.Round(center[1]))
                size = (cv.Round(size[0] * 0.5), cv.Round(size[1] * 0.5))

                # Draw ellipse in random color
                color = cv.CV_RGB(random.randrange(256), random.randrange(256),
                                  random.randrange(256))
                cv.Ellipse(image04, center, size, angle, 0, 360, color, 2,
                           cv.CV_AA, 0)

        # Show image. HighGUI use.
        cv.ShowImage("Result", image04)
Exemplo n.º 23
0
def hs_histogram(src):
    # Convert to HSV
    hsv = cv.CreateImage(cv.GetSize(src), 8, 3)
    cv.CvtColor(src, hsv, cv.CV_BGR2HSV)

    # Extract the H and S planes
    h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    cv.Split(hsv, h_plane, s_plane, None, None)
    planes = [h_plane, s_plane]

    h_bins = 30
    s_bins = 32
    hist_size = [h_bins, s_bins]
    # hue varies from 0 (~0 deg red) to 180 (~360 deg red again */
    h_ranges = [0, 180]
    # saturation varies from 0 (black-gray-white) to
    # 255 (pure spectrum color)
    s_ranges = [0, 255]
    ranges = [h_ranges, s_ranges]
    scale = 10
    hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
    cv.CalcHist([cv.GetImage(i) for i in planes], hist)
    (_, max_value, _, _) = cv.GetMinMaxHistValue(hist)

    hist_img = cv.CreateImage((h_bins * scale, s_bins * scale), 8, 3)

    for h in range(h_bins):
        for s in range(s_bins):
            bin_val = cv.QueryHistValue_2D(hist, h, s)
            intensity = cv.Round(bin_val * 255 / max_value)
            cv.Rectangle(hist_img, (h * scale, s * scale),
                         ((h + 1) * scale - 1, (s + 1) * scale - 1),
                         cv.RGB(intensity, intensity, intensity), cv.CV_FILLED)
    return hist_img
Exemplo n.º 24
0
    def update_brightcont(self):
        # The algorithm is by Werner D. Streidt
        # (http://visca.com/ffactory/archives/5-99/msg00021.html)

        if self.contrast > 0:
            delta = 127. * self.contrast / 100
            a = 255. / (255. - delta * 2)
            b = a * (self.brightness - delta)
        else:
            delta = -128. * self.contrast / 100
            a = (256. - delta * 2) / 255.
            b = a * self.brightness + delta

        cv.ConvertScale(self.src_image, self.dst_image, a, b)
        cv.ShowImage("image", self.dst_image)

        cv.CalcArrHist([self.dst_image], self.hist)
        (min_value, max_value, _, _) = cv.GetMinMaxHistValue(self.hist)
        cv.Scale(self.hist.bins, self.hist.bins, float(self.hist_image.height) / max_value, 0)

        cv.Set(self.hist_image, cv.ScalarAll(255))
        bin_w = round(float(self.hist_image.width) / hist_size)

        for i in range(hist_size):
            cv.Rectangle(self.hist_image, (int(i * bin_w), self.hist_image.height),
                         (int((i + 1) * bin_w), self.hist_image.height - cv.Round(self.hist.bins[i])),
                         cv.ScalarAll(0), -1, 8, 0)
       
        cv.ShowImage("histogram", self.hist_image)
    def predict(self, img_rgb):
        nrgb = self.getNormalizedRGB(img_rgb)

        nrgb = nrgb.reshape(img_rgb.shape[0] * img_rgb.shape[1], 3)
        result_mask = np.zeros((img_rgb.shape[0] * img_rgb.shape[1], 1),
                               dtype='uint8')
        print nrgb.shape[0]
        #         self.visualizeHist( self.skin_hist, self.hist_bins, "Skin hist")
        #         self.visualizeHist( self.non_skin_hist, self.hist_bins, "non Skin hist ")
        #         cv2.imshow('demo', nrgb)
        #         cv2.waitKey(0)
        print self.range_dist
        print self.high_range
        #         self.hist_bins=[250, 250]
        #         print self.hist_bins
        for i in xrange(nrgb.shape[0]):

            #print nrgb[1][i],nrgb[1][i],self.low_range, self.high_range
            if nrgb[i][1] < self.low_range[0] or nrgb[i][1] > self.high_range[
                    0] or nrgb[i][2] < self.low_range[1] or nrgb[i][
                        2] > self.high_range[1]:
                result_mask[i] = 0
                continue
            gbin = cv.Round((nrgb[i][1] - self.low_range[0]) /
                            self.range_dist[0] * self.hist_bins[0])
            rbin = cv.Round((nrgb[i][2] - self.low_range[1]) /
                            self.range_dist[1] * self.hist_bins[1])

            skin_hist_val = self.skin_hist[gbin % 50][rbin % 50]
            if skin_hist_val > 0:
                non_skin_hist_val = self.non_skin_hist[gbin % 50][rbin % 50]
                if non_skin_hist_val > 0:
                    if (skin_hist_val / non_skin_hist_val) > self.theta_thresh:
                        result_mask[i] = 255
                    else:
                        result_mask[i] = 0
                else:
                    result_mask[i] = 0
            else:
                result_mask[i] = 0
        output_mask = result_mask
        print cv2.countNonZero(output_mask)
        #         print output_mask.shape
        output_mask = output_mask.reshape((img_rgb.shape[0], img_rgb.shape[1]))
        return output_mask
Exemplo n.º 26
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        if faces:
            facenum = 0
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

                #code copied from https://github.com/mitchtech/py_servo_facetracker/blob/master/facetracker_servo_gpio.py

                x1 = pt1[0]
                x2 = pt2[0]
                y1 = pt1[1]
                y2 = pt2[1]
                midFaceX = x1 + ((x2 - x1) / 2)
                midFaceY = y1 + ((y2 - y1) / 2)
                facenum = facenum + 1
                client.publish(topic + str(facenum),
                               str(midFaceX) + "," + str(midFaceY), 0)

                print topic + str(facenum), str(midFaceX) + "," + str(midFaceY)

    cv.ShowImage("result", img)
Exemplo n.º 27
0
def draw_common(points):
    success, center, radius = cv.MinEnclosingCircle(points)
    if success:
        cv.Circle(img, roundxy(center), cv.Round(radius),
                  cv.CV_RGB(255, 255, 0), 1, cv.CV_AA, 0)

    box = cv.MinAreaRect2(points)
    box_vtx = [roundxy(p) for p in cv.BoxPoints(box)]
    cv.PolyLine(img, [box_vtx], 1, cv.CV_RGB(0, 255, 255), 1, cv.CV_AA)
Exemplo n.º 28
0
def detect_and_draw(img, cascade, mask):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    if (cascade):
        t = cv.GetTickCount()
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        if faces:
            for ((x, y, w, h), n) in faces:

                # Affichage du carré de recherche
                xmoustache = int((x * image_scale) + w * 0.5)
                ymoustache = int((y * image_scale) + h * 1.25)
                wmoustache = int(w * 0.5 * image_scale)
                hmoustache = int(h * 0.19 * image_scale)
                img_mask = cv.CreateImage((wmoustache, hmoustache), mask.depth,
                                          mask.nChannels)
                cv.SetImageROI(
                    img, (xmoustache, ymoustache, wmoustache, hmoustache))
                cv.Resize(mask, img_mask, cv.CV_INTER_LINEAR)

                # Affichage du carré de recherche
                cv.Sub(img, img_mask, img)
                cv.ResetImageROI(img)
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                #cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

    cv.ShowImage("result", img)
Exemplo n.º 29
0
def detect_and_draw(img,cascade):
    gray=cv.CreateImage((img.width,img.height),8,1)
    small_img=cv.CreateImage((cv.Round(img.width/image_scale),cv.Round(img.height/image_scale)),8,1)
    cv.CvtColor(img,gray,cv.CV_BGR2GRAY)
    cv.Resize(gray,small_img,cv.CV_INTER_LINEAR)
    cv.EqualizeHist(small_img,small_img)

    if(cascade):
        t=cv.GetTickCount()
        faces=cv.HaarDetectObjects(small_img,cascade,cv.CreateMemStorage(0),haar_scale,min_neighbors,haar_flags,min_size)
        t=cv.GetTickCount()-t
        print "time taken for detection = %gms"%(t/(cv.GetTickFrequency()*1000.))
        if faces:
            for ((x,y,w,h),n) in faces:
                pt1=(int(x*image_scale),int(y*image_scale))
                pt2=(int((x+w)*image_scale),int((y+h)*image_scale))
                cv.Rectangle(img,pt1,pt2,cv.RGB(255,0,0),3,8,0)

        cv.ShowImage("video",img)
Exemplo n.º 30
0
def detect_and_draw(img, cascade):
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    midFace = None

    if (cascade):
        t = cv.GetTickCount()
        # HaarDetectObjects takes 0.02s
        faces = cv.HaarDetectObjects(small_img, cascade,
                                     cv.CreateMemStorage(0), haar_scale,
                                     min_neighbors, haar_flags, min_size)
        t = cv.GetTickCount() - t
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                # get the xy corner co-ords, calc the midFace location
                x1 = pt1[0]
                x2 = pt2[0]
                y1 = pt1[1]
                y2 = pt2[1]
                midFaceX = x1 + ((x2 - x1) / 2)
                midFaceY = y1 + ((y2 - y1) / 2)
                midFace = (midFaceX, midFaceY)

    cv.ShowImage("result", img)
    return midFace