Exemplo n.º 1
0
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
fps = cap.get(cv2.CAP_PROP_FPS)

fourcc = cv2.VideoWriter_fourcc(*'DIVX')  # 코덱 정의
out = cv2.VideoWriter('out.avi', fourcc, fps,
                      (int(width), int(height)))  # VideoWriter 객체 정의

while (cap.isOpened()):
    ret, frame = cap.read()
    top_frame = frame[:470, :, :]
    vmid_frame = frame[470:662, :, :]
    bot_frame = frame[662:, :, :]

    gray = cv2.cvtColor(vmid_frame, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 200, 300)
    lines = cv2.HoughLines(edges, 1, np.pi / 180, 100)  # 마지막게 Threshold

    for i in range(len(lines)):
        for rho, theta in lines[i]:
            a = np.cos(theta)
            b = np.sin(theta)
            x0 = a * rho
            y0 = b * rho
            x1 = int(x0 + 1000 * (-b))
            y1 = int(y0 + 1000 * (a))
            x2 = int(x0 - 1000 * (-b))
            y2 = int(y0 - 1000 * (a))

            cv2.line(vmid_frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
            result = np.vstack((top_frame, vmid_frame, bot_frame))
Exemplo n.º 2
0
import cv2.cv as cv
import time

cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)

#http://opencv-code.com/tutorials/automatic-perspective-correction-for-quadrilateral-objects/

while (True):
    # Capture frame-by-frame
    ret, frame = cap.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    edges = cv2.Canny(gray, 100, 200, 3)
    lines = cv2.HoughLines(edges, 1, np.pi / 180, 130,
                           150)  #minLineLength,maxLineGap
    if lines == None:
        continue
    for rho, theta in lines[0]:
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        extend = 1000
        x1 = int(x0 + extend * (-b))
        y1 = int(y0 + extend * (a))
        x2 = int(x0 - extend * (-b))
        y2 = int(y0 - extend * (a))

        cv2.line(gray, (x1, y1), (x2, y2), (0, 0, 255), 2)
Exemplo n.º 3
0
    # Img Difference (Assume objects station /slow motion)
    resized = resized.astype("int16")
    resized0 = resized0.astype("int16")
    frame1 = np.absolute(resized - resized0)
    frame1 = frame1.astype("uint8")

    # Non-maximum Suppression (replace with thresholding)
    # frame1[frame1<15] = 0
    # cv2.imshow('Frame',frame1)
    
    # Hough transform
    edges = cv2.Canny(frame1,150,230, apertureSize = 3)
    # cv2.imshow('edges', edges)
    
    lines = cv2.HoughLines(edges,1,np.pi/180,22) # Or try HoughLinesP
    if lines is not None:
        temp = [0,0,0,0]
        for rho,theta in lines[:,0,:]:
            a = np.cos(theta)
            b = np.sin(theta)
            x0 = a*rho
            y0 = b*rho
            temp[0] += (x0 + 1000*(-b))
            temp[1] += (y0 + 1000*(a))
            temp[2] += (x0 - 1000*(-b))
            temp[3] += (y0 - 1000*(a))
        no_lines = len(lines[:,0,:])
        x1 = int((temp[0]/no_lines)*8)
        y1 = int((temp[1]/no_lines)*8)+10 			# adjustment (shift)
        x2 = int((temp[2]/no_lines)*8)
Exemplo n.º 4
0
Arquivo: align.py Projeto: mgno32/a4
def align(filename):
    im = cv2.imread(filename)
    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    cv2.imshow("gray", R(gray))
    edges = cv2.Canny(gray, 220, 300, apertureSize=3)
    cv2.imshow("edges", R(edges))
    cv2.waitKey(0)
    #pic5 200 else 60
    lines = cv2.HoughLines(edges, 1, np.pi / 360, 200)
    print("lines: ", len(lines))

    def merge_lines(lines):
        nlines = [line[0] for line in lines]
        km = KMeans(4)
        km.fit(nlines)
        return km.cluster_centers_

    lines = merge_lines(lines)

    print(lines)
    result = im.copy()
    h, w, c = result.shape
    for line in lines:
        # line: xcos(t) + ysin(y) - p = 0
        rho, theta = line
        _cos = np.cos(theta)
        _sin = np.sin(theta)
        if _cos != 0:
            pt1 = (int(rho / _cos), 0)
            pt2 = (int((rho - h * _sin) / _cos), h)
        else:
            #horizontal
            pt1 = (0, rho)
            pt2 = (w, rho)
        cv2.line(result, pt1, pt2, (0, 0, 255), 3)

    # 求交点
    def get_intersection(a, b):
        #a: (rho1, theta1)
        #b: (rho2, theta2)
        _cos0 = np.cos(a[1])
        _sin0 = np.sin(a[1])
        _cos1 = np.cos(b[1])
        _sin1 = np.sin(b[1])
        if _sin1 != 0:
            t = _sin0 / _sin1
            x = (a[0] - t * b[0]) / (_cos0 - _cos1 * t)
            y = (b[0] - x * _cos1) / _sin1
            return np.array([x, y])
        x = b[0] / _cos1
        y = (a[0] - x * _cos0) / _sin0
        return np.array([x, y])

    tts = np.vstack([get_intersection(lines[3], lines[j]) for j in range(3)])
    rec = np.sum(np.multiply(tts, tts), 1)
    ai = np.argmax(rec)
    #lines[3] 和 lines[ai] 几乎平行
    pts = []
    for j in range(3):
        if j != ai:
            pts.append(tts[j])
    pts.extend(
        [get_intersection(lines[ai], lines[j]) for j in range(3) if j != ai])
    for pt in pts:
        xy = (int(pt[0]), int(pt[1]))
        cv2.circle(result, xy, 32, (255, 0, 0), 32)

    cnts = [0] * 4
    for i in range(4):
        for j in range(4):
            if pts[i][0] > pts[j][0]:
                cnts[i] += 1
            if pts[i][1] > pts[j][1]:
                cnts[i] += 1

    lt = np.argmin(cnts)
    rb = np.argmax(cnts)

    # 计算右上角
    maxdx = -np.inf
    rt = -1
    for i in range(4):
        if i != lt and i != rb:
            dx = pts[i][0] - pts[lt][0]
            if dx > maxdx:
                maxdx = dx
                rt = i
    # 计算左下角
    for i in range(4):
        if i != lt and i != rb and i != rt:
            lb = i
    paper_p = np.array([(0, 0), (PAPER_WIDTH, 0), (PAPER_WIDTH, PAPER_HEIGHT),
                        (0, PAPER_HEIGHT)]).astype(np.float32)
    '''
    pts = [pts[i].tolist() for i in range(4)]
    pts.sort()
    [lt, rt, rb, lb] = [1,3,2,0]
    sp = np.array([pts[i] for i in [lt,rt,rb,lb]]).astype(np.float32)
    #print (sp)
    '''
    sp = np.array([pts[i] for i in [lt, rt, rb, lb]]).astype(np.float32)
    M = cv2.getPerspectiveTransform(sp, paper_p)
    paper = cv2.warpPerspective(im, M, (int(PAPER_WIDTH), int(PAPER_HEIGHT)))
    result = cv2.resize(result, (1080, 720))
    cv2.imshow("source", R(im))
    cv2.waitKey(0)
    cv2.imshow("lines", R(result))
    cv2.waitKey(0)
    cv2.imshow("paper", R(paper))
    cv2.waitKey(0)
    return paper
verticalsize = rows // 30   # 30 is the origin one; choose the resolution
# Create structure element for extracting vertical lines through morphology operations
verticalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, verticalsize))
# Apply morphology operations
vertical = cv2.erode(vertical, verticalStructure)
vertical = cv2.dilate(vertical, verticalStructure)

# print(len(vertical[0]))
# # implt(vertical)

gray = cv2.addWeighted(horizontal,0.5,vertical,0.5,0)
# gray = cv2.addWeighted(horizontal,0.5,vertical,0.5,0)
implt(gray,'gray')
cv2.imwrite('../data/pages/separated_lines.jpg',gray)

horizontal_lines = cv2.HoughLines(horizontal,1,np.pi/180,700)  # h800
horizontal_boundary = []
print(len(horizontal_lines))
# lines = cv2.HoughLinesP(edges,1,np.pi/180,100,100,10)
for i in range(len(horizontal_lines)):
    for rho,theta in horizontal_lines[i]:
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a*rho
        y0 = b*rho
        x1 = int(x0 + 1000*(-b))
        y1 = int(y0 + 1000*(a))
        x2 = int(x0 - 1000*(-b))
        y2 = int(y0 - 1000*(a))
#         print(x1,x2,y1,y2)
        if (abs(y1-y2) <= 2):
Exemplo n.º 6
0
def identifica_cor(frame):
    '''
    Segmenta o maior objeto cuja cor é parecida com cor_h (HUE da cor, no espaço HSV).
    '''
    hsv1_M = np.array([ 0, 0, 0], dtype=np.uint8)
    hsv2_M= np.array([0, 0, 255], dtype=np.uint8)

    # placeholdersmaior
    valores_esq = { "a_esq" : [], "b_esq" : [], "rho_esq" : [],"aMed_esq" : 1.0, "bMed_esq" : 1.0, "rhoMed_esq" : 1.0}
    valores_dir = { "a_dir" : [], "b_dir" : [], "rho_dir" : [],"aMed_dir" : 1.0, "bMed_dir" : 1.0, "rhoMed_dir" : 1.0}

    #aMed_esq = 1
    #bMed_esq = 1
    #rhoMed_esq = 1
    #aMed_dir = 1
    #bMed_dir = 1
    #rhoMed_dir = 1

    min_length = 50 # Melhorar mascara e aumentar min_len
    lista_ab = []

    #a_esq = []
    #b_esq = []
    #rho_esq = []
    #a_dir = []
    #b_dir = []
    #rho_dir = []

    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    mask1 = cv2.inRange(hsv, hsv1_M, hsv2_M)
    seg = cv2.morphologyEx(mask1,cv2.MORPH_CLOSE,np.ones((1, 1)))
    selecao = cv2.bitwise_and(frame, frame, mask=seg)
    blur = cv2.GaussianBlur(selecao,(5,5),0)
    min_contrast = 50
    max_contrast = 250
    linhas = cv2.Canny(blur, min_contrast, max_contrast )
    bordas_color = cv2.cvtColor(linhas, cv2.COLOR_RGB2BGR)
    lines = cv2.HoughLines(linhas, 1, np.pi/180, min_length)
    if lines is not None:
        for line in lines:
            rho, theta = line[0]
            a = np.cos(theta)
            b = np.sin(theta)
            lista_ab.append([a, b, rho])
        for abrho in lista_ab:
            if -18 < abrho[0] < -0.1 :
                valores_esq["a_esq"].append(abrho[0])
                valores_esq["b_esq"].append(abrho[1])
                valores_esq["rho_esq"].append(abrho[2])
            elif 18 > abrho[0] > 0.1 :
                valores_dir["a_dir"].append(abrho[0])
                valores_dir["b_dir"].append(abrho[1])
                valores_dir["rho_dir"].append(abrho[2])

    if (len(valores_esq["a_esq"]) &  len(valores_esq["b_esq"]) & len(valores_esq["rho_esq"])) != 0:
        valores_esq["aMed_esq"] = sum(valores_esq["a_esq"]) / len(valores_esq["a_esq"])
        valores_esq["bMed_esq"] = sum(valores_esq["b_esq"]) / len(valores_esq["b_esq"])
        valores_esq["rhoMed_esq"] = sum(valores_esq["rho_esq"]) / len(valores_esq["rho_esq"])

    if (len(valores_dir["a_dir"]) &  len(valores_dir["b_dir"]) & len(valores_dir["rho_dir"])) != 0:
        valores_dir["aMed_dir"] = sum(valores_dir["a_dir"]) / len(valores_dir["a_dir"])
        valores_dir["bMed_dir"] = sum(valores_dir["b_dir"]) / len(valores_dir["b_dir"])
        valores_dir["rhoMed_dir"] = sum(valores_dir["rho_dir"]) / len(valores_dir["rho_dir"])
        
    desenhar_reta_media(frame, valores_esq["aMed_esq"], valores_esq["bMed_esq"], valores_esq["rhoMed_esq"])
    desenhar_reta_media(frame, valores_dir["aMed_dir"], valores_dir["bMed_dir"], valores_dir["rhoMed_dir"])
    x_ponto, y_ponto = interseccao(frame, valores_esq["aMed_esq"], valores_esq["bMed_esq"], valores_esq["rhoMed_esq"], valores_dir["aMed_dir"], valores_dir["bMed_dir"], valores_dir["rhoMed_dir"])
    media = (x_ponto,y_ponto)

        
    font = cv2.FONT_HERSHEY_SIMPLEX
    cv2.putText(mask1,'Press q to quit',(0,50), font, 1,(255,255,255),2,cv2.LINE_AA)
    cv2.imshow ('Frame', frame)
    
    centro = (frame.shape[1]//2, frame.shape[0]//2)


    return media, centro
Exemplo n.º 7
0
    dst = cv2.Canny(src, 50, 200) # aplica o detector de bordas de Canny à imagem src
    cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR) # Converte a imagem para BGR para permitir desenho colorido

    if True: # HoughLinesP
        lines = cv2.HoughLinesP(dst, 10, math.pi/180.0, 100, np.array([]), 5, 5)
        print("Used Probabilistic Rough Transform")
        print("The probabilistic hough transform returns the end points of the detected lines")
        a,b,c = lines.shape
        print("Valor de A",a, "valor de lines.shape", lines.shape)
        for i in range(a):
            # Faz uma linha ligando o ponto inicial ao ponto final, com a cor vermelha (BGR)
            cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv2.LINE_AA)

    else:    # HoughLines
        # Esperemos nao cair neste caso
        lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
        a,b,c = lines.shape
        for i in range(a):
            rho = lines[i][0][0]
            theta = lines[i][0][1]
            a = math.cos(theta)
            b = math.sin(theta)
            x0, y0 = a*rho, b*rho
            pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
            pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
            cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
        print("Used old vanilla Hough transform")
        print("Returned points will be radius and angles")

    cv2.imshow("source", src)
    cv2.imshow("detected lines", cdst)
Exemplo n.º 8
0
def line_detection_low(image):
    gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
    edges = cv.Canny(gray, 50, 310)  # apertureSize参数默认其实就是3  # 50 310
    # cv.imshow("edges", edges)
    edge = Image.fromarray(edges)
    edge.save("edge.jpeg")
    lines = cv.HoughLines(edges, 1, np.pi / 180, 30)  # 68
    # l1 = lines[:, 0, :]
    # print(l1)
    mink = float('inf')
    maxk = -float('inf')
    for line in lines:
        rho, theta = line[0]  # line[0]存储的是点到直线的极径和极角,其中极角是弧度表示的。
        a = np.cos(theta)  # theta是弧度
        b = np.sin(theta)
        x0 = a * rho  # 代表x = r * cos(theta)
        y0 = b * rho  # 代表y = r * sin(theta)
        x1 = int(x0 + 1000 * (-b))  # 计算直线起点横坐标
        y1 = int(y0 + 1000 * a)  # 计算起始起点纵坐标
        x2 = int(x0 - 1000 * (-b))  # 计算直线终点横坐标
        y2 = int(
            y0 - 1000 * a
        )  # 计算直线终点纵坐标    注:这里的数值1000给出了画出的线段长度范围大小,数值越小,画出的线段越短,数值越大,画出的线段越长
        print("x1: %s, y1:%s, x2:%s, y2:%s" % (x1, y1, x2, y2))
        k = (y2 - y1) / (x2 - x1)
        if k > maxk:
            maxk = k
            xmax1 = x1
            ymax1 = y1
            xmax2 = x2
            ymax2 = y2
            lineMax = line
        if k < mink:
            mink = k
            xmin1 = x1
            ymin1 = y1
            xmin2 = x2
            ymin2 = y2
            lineMin = line
    cv.line(image, (xmax1, ymax1), (xmax2, ymax2), (255, 0, 0),
            2)  # 点的坐标必须是元组,不能是列表。
    cv.line(image, (xmin1, ymin1), (xmin2, ymin2), (255, 0, 0),
            2)  # 点的坐标必须是元组,不能是列表。
    crossX = int((maxk * xmax1 - ymax1 - mink * xmin1 + ymin1) / (maxk - mink))
    crossY = int(
        (maxk * mink *
         (xmax1 - xmin1) + maxk * ymin1 - mink * ymax1) / (maxk - mink))
    print(crossX, 250 - crossY)
    height = 250 - crossY
    print("顶点高度:" + str(int(height)))
    x1 = (-height) / mink + crossX
    x2 = (-height) / maxk + crossX
    print("与x轴交点:%f,%f" % (x1, x2))
    # 底边长度
    xl = abs(x1 - x2)
    cv.circle(image, (crossX, crossY), 3, (0, 255, 0), -1)  # 两直线交点
    cv.circle(image, (xmax2, ymax2), 3, (0, 0, 255), -1)
    cv.circle(image, (xmin1, ymin1), 3, (0, 0, 255), -1)
    vector1 = np.array([xmax2 - crossX, ymax2 - crossY])
    vector2 = np.array([xmin1 - crossX, ymin1 - crossY])
    L1 = np.sqrt(vector1.dot(vector1))
    L2 = np.sqrt(vector2.dot(vector2))
    cos_angle = vector1.dot(vector2) / (L1 * L2)
    angle = np.arccos(cos_angle)
    angle2 = angle * 360 / 2 / np.pi
    print(angle2)
    # cv.imshow("image-lines", image)
    im = Image.fromarray(image)
    # im.save(image_line)
    cv.waitKey(0)
    return angle2, edge, image, height, xl
Exemplo n.º 9
0
#   Codes inspired by:
#   Github.com/imvinod/
#   Official Documentation
#==============================================================================
import cv2
import numpy as np

#HOUGHLINES LINE DETECTION
image = cv2.imread('imgs/demo1.jpg')
cv2.imshow('Original', image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 170)
rho_accuracy = 1
theta_accuracy = np.pi / 180
threshold = 210
lines = cv2.HoughLines(edges, rho_accuracy, theta_accuracy, threshold)

for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
    cv2.line(image, (x1, y1), (x2, y2), (255, 255, 0), 2)
#cv2.imwrite('houghlines.jpg',image)
cv2.imshow('Hough Lines', image)
Exemplo n.º 10
0
    def get_hough_lines(self, edges):
        kernel = np.ones((11, 11), np.uint8)
        edges = cv2.dilate(edges, kernel, iterations=1)
        # cv2.imshow('dilated edges in hough', edges)
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()
        # kernel = np.ones((2,2),np.uint8)
        # dilated_edges = cv2.dilate(edges,kernel,iterations = 1)

        minLength = 80
        maxLineGap = 50
        lines = cv2.HoughLines(edges, 1, np.pi / 180, 80)
        # lines = np.squeeze(lines)
        # lines = cv2.HoughLinesP(edges,1,np.pi/120,10, minLength, maxLineGap)

        if (lines is not None):
            lines = np.squeeze(lines)
            print("houghlines shape =", lines.shape)
            edges3CH = np.dstack((edges, edges, edges))
            new_lines = []
            rect_line = np.zeros((1, 2))

            for rho, theta in lines:
                a = np.cos(np.float(theta))
                b = np.sin(np.float(theta))
                ##### convert line from polar coordinates to cartesian coordinattes
                slope = -a / b
                intercept = rho / b
                # print("intercept, slope = ",intercept,slope)
                rect_line = np.vstack((rect_line, np.array([intercept,
                                                            slope])))
                x0 = a * rho
                y0 = b * rho
                x1 = int(x0 + 1000 * (-b))
                y1 = int(y0 + 1000 * (a))
                x2 = int(x0 - 1000 * (-b))
                y2 = int(y0 - 1000 * (a))
                cv2.line(edges3CH, (x1, y1), (x2, y2), (0, 0, 255), 2)
                # new_lines.append([rh,th])
            # cv2.imshow('all houg_lines', edges3CH)
            # cv2.waitKey(0)
            # cv2.destroyAllWindows()
            print("new_lines = ", new_lines)
            np_lines = np.array(new_lines)
            status = False
            line_clusters = self.get_line_clusters(np_lines, 25, 0.4)
            print("lines clusters = ", line_clusters)
            if (line_clusters.shape[0] >= 4):
                mod_line_cluster = self.augment_lines(line_clusters)

                # print ("mod_line_cluster",mod_line_cluster)
                rect_line = np.zeros((1, 2))

                # print line_clusters
                # for rho,theta in mod_line_cluster:
                for rho, theta in new_lines:

                    # rho = rho+1
                    a = np.cos(np.float(theta))
                    b = np.sin(np.float(theta))
                    ##### convert line from polar coordinates to cartesian coordinattes
                    slope = -a / b
                    intercept = rho / b
                    # print("intercept, slope = ",intercept,slope)
                    rect_line = np.vstack(
                        (rect_line, np.array([intercept, slope])))
                    x0 = a * rho
                    y0 = b * rho
                    x1 = int(x0 + 1000 * (-b))
                    y1 = int(y0 + 1000 * (a))
                    x2 = int(x0 - 1000 * (-b))
                    y2 = int(y0 - 1000 * (a))
                    cv2.line(edges3CH, (x1, y1), (x2, y2), (0, 0, 255), 2)
                rect_line = rect_line[1:, :]
                # print ("rect_line",rect_line)
                # cv2.imshow('clustered hough lines', edges3CH)
                # cv2.waitKey(0)
                # cv2.destroyAllWindows()
                status = True
                return status, rect_line
            else:
                # print('no hough lines')
                status = False
                return status, lines

        else:
            status = False
            return status, lines
Exemplo n.º 11
0
#plt.title(titles[i])
#plt.xticks([]), plt.yticks([])
#plt.show()

##检测线段
# input_img = canny_img
# lines = cv2.HoughLinesP(input_img, 1, np.pi / 180, 100, 100, 10)
# for x1, y1, x2, y2 in lines[0]:
#     cv2.line(input_img, (x1, y1), (x2, y2), (0, 255, 0), 100)
# win4 = cv2.namedWindow('xianduan', flags=0)
# cv2.imshow('xianduan', input_img)

###霍夫变换
#最后说明多少个点决定一条直线
input_img = canny_img1
lines = cv2.HoughLines(input_img, 1, np.pi / 10, 40)  #这里对最后一个参数使用了经验型的值
lines1 = lines[:, 0, :]  #提取为为二维
for rho, theta in lines1[:]:
    print(rho, theta)
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
    #print(x1,y1,x2,y2)
    input_img = cv2.line(input_img, (x1, y1), (x2, y2), (255, 0, 0), 2)

win5 = cv2.namedWindow('HF', flags=0)
Exemplo n.º 12
0
import cv2
import numpy as np
""" hough transform is apopular technique to detect any shape,
if you can represent that shape in a mathematical form. it can
detect the shape even if it is broken or distorted a little bit"""
#steps
#Edge detection
#Mapping of edge points to the hough space snd store in an acumulator
# interpretation of the accumulator toyeild lines of infinite lenght
#the interpretation is done by thresholding and other possible constraints
#conversion of infinite lines to finite lines

img = cv2.imread(r'data/sudoku.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edge = cv2.Canny(gray, 50, 150, apertureSize=3)
lines = cv2.HoughLines(edge, 1, np.pi / 180, 200)

for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho

    x1 = int(x0 + 1000 * (-b))

    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
    cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
Exemplo n.º 13
0
        print("Horitzontal lines: ", len(horitzontalLines))

        for i in range(0, len(verticalLines)):
            #print VERTICAL in GREEN
            cv2.line(cdstP, (verticalLines[i][0][0], verticalLines[i][0][1]),
                     (verticalLines[i][0][2], verticalLines[i][0][3]),
                     (0, 255, 0), 3, cv2.LINE_AA)
            print("LINE ", i, ": ")
            print("--------------")
            print(verticalLines[i])

        print("Vertical lines: ", len(verticalLines))

    elif method == 2:
        lines = cv2.HoughLines(dst, 1, np.pi / 180, 100, None, 0, 0)
        #linesP = cv2.HoughLinesP(dst, 1, np.pi / 180, 50, None, 50, 10)

        # SOURCE size = 140 lines  -- ANotacio utilitzada per veure si anava millorant la detecció de linies
        # mathematicalLines es un array que intenta expressar les linies d'una manera més humana
        # amb punts d'inici, final, graus, distàncies....
        valid_lines = []

        for line in lines:
            rho, theta = line[0]
            if theta > math.pi:
                theta = theta - math.pi
            if theta > math.pi / 2 + math.pi / 4:
                theta = theta - math.pi

            assigned = False
Exemplo n.º 14
0
    def hough(self, picture):
        img = cv2.cvtColor(picture, cv2.COLOR_RGB2GRAY)
        # uu=rgb2gray(picture)
        #cv2.imshow("gray", img)
        # gradX = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
        # gradY = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)

        # cv2.imshow("gradX", gradX)
        # x=cv2.waitKey(1)& 0xFF
        # cv2.imshow("gradY", gradY)
        # x=cv2.waitKey(1)
        # subtract the y-gradient from the x-gradient
        # gradient = cv2.subtract(gradX, gradY)
        # img = cv2.convertScaleAbs(gradient)
        img = cv2.blur(img, (3, 3))
        edges = cv2.Canny(img, 50, 150, apertureSize=3)
        # cv2.imshow('cannyuu',edges)
        lines = cv2.HoughLines(edges, 1, np.pi / 180,
                               118)  # ÕâÀï¶Ô×îºóÒ»¸ö²ÎÊýʹÓÃÁ˾­ÑéÐ͵ÄÖµ
        if (lines is not None):
            for line in lines[0]:
                line_pix = line[0]
        else:
            line_pix = -1
        result = img.copy()
        shuipingx = []
        if (lines is not None):
            for lop in range(int(lines.size / 2)):
                for line in lines[lop]:
                    rho = line[0]  # µÚÒ»¸öÔªËØÊǾàÀërho
                    theta = line[1]  # µÚ¶þ¸öÔªËØÊǽǶÈtheta
                    #print(rho)
                    #print(theta)
                    if (theta <
                        (np.pi / 4.)) or (theta >
                                          (3. * np.pi / 4.0)):  # ´¹Ö±Ö±Ïß
                        # ¸ÃÖ±ÏßÓëµÚÒ»ÐеĽ»µã
                        pt1 = (int(rho / np.cos(theta)), 0)
                        # ¸ÃÖ±ÏßÓë×îºóÒ»ÐеĽ¹µã
                        pt2 = (int((rho - result.shape[0] * np.sin(theta)) /
                                   np.cos(theta)), result.shape[0])
                        # »æÖÆÒ»Ìõ°×Ïß
                        cv2.line(result, pt1, pt2, 0, 1)
                    else:  # ˮƽֱÏß
                        # ¸ÃÖ±ÏßÓëµÚÒ»ÁеĽ»µã
                        pt1 = (0, int(rho / np.sin(theta)))
                        # ¸ÃÖ±ÏßÓë×îºóÒ»ÁеĽ»µã
                        pt2 = (result.shape[1],
                               int((rho - result.shape[1] * np.cos(theta)) /
                                   np.sin(theta)))
                        # »æÖÆÒ»ÌõÖ±Ïß
                        if (pt2[0] - pt1[0] > 0):
                            cv2.line(result, pt1, pt2, 0, 5)
                            shuipingx.append(pt1[1])
                        #print(('pt2=', pt2, 'pt1  =', pt1))
                # if shuipingx>0:
                #   break
        nowiq = datetime.datetime.now()
        if not os.path.isdir('hough'):
            os.makedirs('hough')
            print('create dir picture')
        cv2.imwrite(
            'hough/%s_%s_%s_%s_%s_%s.jpg' %
            (nowiq.year, nowiq.month, nowiq.day, nowiq.hour, nowiq.minute,
             nowiq.second), result)
        return result, shuipingx, line_pix
Exemplo n.º 15
0
    def detectTurn(self):
        ### Params for region of interest
        bot_left = [0, 480]
        bot_right = [640, 480]
        apex_right = [640, 170]
        apex_left = [0, 170]
        v = [np.array([bot_left, bot_right, apex_right, apex_left], dtype=np.int32)]

        cropped_raw_image = self.region_of_interest(cf.img_rgb_raw, v)
        # cropped_raw_image = cf.img_rgb_raw[self.crop_top:self.crop_bottom, :]
        
        ### Run canny edge dection and mask region of interest
        # gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        hsv = cv2.cvtColor(cropped_raw_image, cv2.COLOR_BGR2HSV) 
        lower_white = np.array([0,0,255], dtype=np.uint8)
        upper_white = np.array([179,255,255], dtype=np.uint8)
        mask = cv2.inRange(hsv, lower_white, upper_white) 
        dilation = cv2.dilate(mask, self.kernel, iterations=1)
        closing = cv2.morphologyEx(dilation, cv2.MORPH_GRADIENT, self.kernel)
        closing = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, self.kernel)

        blur = cv2.GaussianBlur(closing, (9,9), 0)
        edge = cv2.Canny(blur, 150,255)

        cropped_image = self.region_of_interest(edge, v)
        # cropped_image = edge[self.crop_top:self.crop_bottom, :]
        
        # blank_image = np.zeros(cropped_raw_image.shape)

        # turnSignal = False

        lines = cv2.HoughLines(cropped_image, rho=0.2, theta=np.pi/80, threshold=70)
        if lines is not None:
            # print('lines', len(lines))
            for line in lines:
                for rho,theta in line:
                    a = np.cos(theta)
                    b = np.sin(theta)
                    x0 = a*rho
                    y0 = b*rho
                    x1 = int(x0 + 1000*(-b))
                    y1 = int(y0 + 1000*(a))
                    x2 = int(x0 - 1000*(-b))
                    y2 = int(y0 - 1000*(a))

                    cv2.line(cropped_raw_image, (x1,y1), (x2,y2), cf.listColor[0], 2)
                    # cv2.line(blank_image, (x1,y1), (x2,y2), cf.listColor[0], 2)

                    if abs(y1-y2) < 40:
                        # turnSignal = True
                        # break
                        return True
        
        # cv2.imshow('hsv', hsv)
        # cv2.imshow('closing', closing)
        # cv2.imshow('cropped_image', cropped_image)
        # cv2.imshow('cropped_raw_image', cropped_raw_image)
        # cv2.imshow('blank_image', blank_image)

        return False
Exemplo n.º 16
0
gray = cv2.cvtColor(output, cv2.COLOR_BGR2GRAY)

low_threshold, high_threshold = 100, 500
edges = cv2.Canny(gray, low_threshold, high_threshold)

cv2.imshow('edges', gray)
cv2.waitKey(0)

rho = 3  # distance resolution in pixels of the Hough grid
theta = np.pi / 180  # angular resolution in radians of the Hough grid
threshold = 200  # minimum number of votes (intersections in Hough grid cell)
# min_line_length = 10  # minimum number of pixels making up a line
# max_line_gap = 5  # maximum gap in pixels between connectable line segments
line_image = np.copy(img) * 0  # creating a blank to draw lines on

lines = cv2.HoughLines(edges, rho, theta, threshold)

print(len(lines))
for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho

    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))

    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
    cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)
Exemplo n.º 17
0
def main(argv):
    ## [load]
    default_file = 'paashaas.jpg'
    maxlen = 7
    maxhoek = np.pi / 2  # in radialen

    offset_y = 200 + 200
    offset_x = 180

    filename = argv[0] if len(argv) > 0 else default_file

    # Loads an image
    src = cv.imread(cv.samples.findFile(filename), 0)  # cv.IMREAD_GRAYSCALE)

    # Check if image is loaded fine
    if src is None:
        print('Error opening image!')
        print('Usage: hough_lines.py [image_name -- default ' + default_file +
              '] \n')
        return -1
    ## [load]

    ## [edge_detection]
    # Edge detection
    dst = cv.Canny(src, 50, 200, None, 3)
    ## [edge_detection]

    # Copy edges to the images that will display the results in BGR
    cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR)
    cdstP = np.copy(cdst)

    ## [hough_lines]
    #  Standard Hough Line Transform
    lines = cv.HoughLines(dst, 1, np.pi / 180, 150, None, 0, 0)
    ## [hough_lines]

    ## [draw_lines]
    # Draw the lines
    if lines is not None:
        for i in range(0, len(lines)):
            rho = lines[i][0][0]
            theta = lines[i][0][1]
            a = math.cos(theta)
            b = math.sin(theta)
            x0 = a * rho
            y0 = b * rho
            pt1 = (int(x0 + 1000 * (-b)), int(y0 + 1000 * (a)))
            pt2 = (int(x0 - 1000 * (-b)), int(y0 - 1000 * (a)))

            cv.line(cdst, pt1, pt2, (0, 0, 255), 3, cv.LINE_AA)
    ## [draw_lines]

    ## [hough_lines_p]
    # Probabilistic Line Transform
    linesP = cv.HoughLinesP(dst, 1, np.pi / 2, 1, None, 0, 0)
    ## [hough_lines_p]

    ## [draw_lines_p]
    # Draw the lines
    coorda = []  # array van coordinaten
    if linesP is not None:
        File1 = open("tabel2.txt", "w")
        for i in range(0, len(linesP)):
            l = linesP[i][0]
            cv.line(cdstP, (l[0], l[1]), (l[2], l[3]), (0, 0, 255), 3,
                    cv.LINE_AA)
            coorda.append([[l[0] + offset_x, -l[1] + offset_y],
                           [l[2] + offset_x, -l[3] + offset_y]])
            File1.write("[" + str(l[0]) + " " + str(l[1]) + "]" + "\n")
        File1.close()

    coorda = sorted(coorda)  # array of coordinates

    groepnr = 0
    coordgroepen = [coorda[0]]  # array of coordinates

    while len(coorda) > 0:
        afstanden = []
        weg = []
        for i in coorda:
            if len(coordgroepen[groepnr]) >= 3:
                afst = afstand(coordgroepen[groepnr][-3],
                               coordgroepen[groepnr][-1], i[1], maxlen,
                               maxhoek)
            else:
                afst = afstand(coordgroepen[groepnr][1],
                               coordgroepen[groepnr][-1], i[1], maxlen,
                               maxhoek)
            if afst < maxlen:
                afstanden.append([afst, i])

        if len(afstanden) == 0:
            if len(coorda) > 0:
                coordgroepen.extend([coorda[0]])
            groepnr += 1
        else:
            afstanden.sort()
            coordgroepen[groepnr].extend(afstanden[0][1])
            coorda.remove(afstanden[0][1])

    print(groepnr)

    plt.axis('off')
    plt.axis('equal')
    for i in coordgroepen:
        xs = [x[0] for x in i]
        ys = [x[1] for x in i]
        plt.plot(xs, ys)
    # plt.savefig('dobot\\dobot_min' + minlen.__str__() + '_max' + maxlen.__str__() + '_' + default_file)
    plt.show()

    ## [draw_lines_p]

    ## [imshow]
    # Show results
    # cv.imshow("Source", src)
    # cv.imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst)
    cv.imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP)

    ## [imshow]
    ## [exit]
    # Wait and Exit
    cv.waitKey()

    return 0
Exemplo n.º 18
0
def find_road_boundary(img):
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_blur = cv2.GaussianBlur(img_gray, (3, 3), 0)

    contour = cv2.Canny(img_blur, 20, 60)
    lines = cv2.HoughLines(contour, 1, np.pi / 180, 100, 100, 5)
    lines_direction = []
    lines_intercept = []
    lines_dataset2 = []
    lines1 = lines[:, 0, :]
    #for line in lines1:
    #    [x1,y1,x2,y2] = line
    #print(x1)
    #print(x2)
    #print(y1)
    #print(y2)

    #    if((x1 in range(0,480)) and (x2 in range(0,480)) and (y1 in range(0,360)) and (y2 in range(0,360))):
    #            dx,dy = x2-x1,y2-y1
    #            angle = np.arctan2(dy,dx) * (180/np.pi)
    #            if (abs(angle)>10 and abs(angle) < 75):
    #                print("%d   %d   %d   %d"% (x1,y1,x2,y2))
    #                direction = dy/(dx+0.000001)
    #                intercept = y1 - direction*x1
    #                 if(abs(direction)>=40):
    #                      direction = 50
    #                      intercept = 100000
    #                print(direction)
    #                print(intercept)
    #                   lines_direction.append(direction)
    #                   lines_intercept.append(intercept)
    #                   cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
    #                   lines_dataset2.append(line)
    # plt.figure()
    # plt.scatter(lines_direction,lines_intercept)
    # plt.show()

    #   lines_dataset = np.array([[lines_direction[i],lines_intercept[i]] for i in range(len(lines_direction))])
    #   print(lines_dataset)
    #K = range(1,4)
    #for k in K:
    #   k = 2
    #   kmeans = KMeans(n_clusters=k)
    #   kmeans.fit(lines_dataset)
    #  print(kmeans.cluster_centers_)
    #   boundaries = []
    #   for i in range (kmeans.cluster_centers_.shape[0]):
    #       boundary = []
    #        for j in range(360):
    #            x = int((j - kmeans.cluster_centers_[i][1])/kmeans.cluster_centers_[i][0])
    #cv2.circle (img,(x,j),2,(0,0,255),2)
    #meandistortion = sum
    lines_dataset = []
    for rho, theta in (lines1[:]):
        print(theta * 180 / np.pi)
        if ((theta * 180 / np.pi < 80) or (theta * 180 / np.pi > 105)):
            lines_dataset.append([rho, theta])
            a = np.cos(theta)
            b = np.sin(theta)
            x0 = a * rho
            y0 = b * rho
            x1 = int(x0 + 1000 * (-b))
            y1 = int(y0 + 1000 * (a))
            x2 = int(x0 - 1000 * (-b))
            y2 = int(y0 - 1000 * (a))
            #if()
            cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 1)

#cv2.imshow("line_detector",img)
#cv2.imshow('Canny',contour)
#cv2.waitKey(50000)
    lines_dataset = np.array(lines_dataset)
    k = 3
    kmeans = KMeans(n_clusters=k)
    kmeans.fit(lines_dataset)
    print(kmeans.cluster_centers_)
    boundaries = []
    for i in range(kmeans.cluster_centers_.shape[0]):
        boundary = []
        for j in range(360):
            x = int((j - kmeans.cluster_centers_[i][1]) /
                    kmeans.cluster_centers_[i][0])
            cv2.circle(img, (x, j), 2, (0, 255, 0), 2)
    cv2.imshow("line_detector", img)
    #cv2.imshow('Canny',contour)
    cv2.waitKey(50000)
Exemplo n.º 19
0
clip_img = new_img[left_top_w:right_bottle_w,
                   left_top_l:right_bottle_l, :]  #图片切割的结果

#cv.imwrite('pic/clip.jpg', clip_img)

#cv.imshow('clip_img', clip_img)

gray_img = cv.cvtColor(clip_img, cv.COLOR_BGR2GRAY)  #灰度化
edges_img = cv.Canny(gray_img, 50, 150, apertureSize=3)  #边缘检测
ret, binary = cv.threshold(gray_img, 0, 255,
                           cv.THRESH_BINARY | cv.THRESH_TRIANGLE)
#cv.imshow('gray_img', gray_img)
#cv.imshow('edges', edges_img)
#cv.imshow('thresh', binary)

lines = cv.HoughLines(edges_img, 1, np.pi / 180, 150)  #houghline直线检测

#print(lines.shape)

ls = []  #保存直线上的点

for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
 cv2.imshow('original', img)
 b_channel = np.array(img[:,:,0]).astype('float')
 g_channel = np.array(img[:,:,1]).astype('float')
 r_channel = np.array(img[:,:,2]).astype('float')
 #cv2.imshow('b_chan', b_channel)
 #cv2.imshow('g_chan', g_channel)
 #cv2.imshow('r_chan', r_channel)
 bgr_channel = np.add((np.add(b_channel, g_channel)), r_channel)
 img_rec_red = np.divide(r_channel, bgr_channel)
 img_rec_red = img_rec_red * 255
 img_rec_red = np.floor(img_rec_red).astype('uint8')
 
 #gray = cv2.cvtColor(img_rec_red,cv2.COLOR_BGR2GRAY)
 edges = cv2.Canny(img_rec_red,50,150,apertureSize = 3)
 
 lines = cv2.HoughLines(edges,1,np.pi/40,40)
 print("raw lines:")
 print(lines)
 
 # convert the grayscale image to binary image
 ret,thresh = cv2.threshold(img_rec_red,127,255,0)
 cv2.imshow('thresh', thresh)
  
 # calculate moments of binary image
 im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
 try:
     for c in contours:
         # calculate moments for each contour
         M = cv2.moments(c)
         cX = int(M["m10"] / M["m00"])
         cY = int(M["m01"] / M["m00"])
    imlow = cv2.cvtColor(imlow1, cv2.COLOR_BGR2GRAY)
    imlow = cv2.normalize(imlow.astype('float'), None, 0.0, 1.0,
                          cv2.NORM_MINMAX)
    ##    laplacian = cv2.Laplacian(imlow,cv2.CV_64F)
    ##    laplacian1 = np.absolute(laplacian)
    ##    laplacian2 = np.uint8(laplacian1)
    kernel = np.array([[-1, 0, 1]])
    dst = cv2.filter2D(imlow, -1, kernel)

    dst[dst < 0] = 0  # Where values are low
    dst[dst > 1] = 1  # Where values are high
    dst = dst * 255
    dst = np.uint8(dst)
    ret, th3 = cv2.threshold(dst, 20, 255, cv2.THRESH_BINARY)

    lines = cv2.HoughLines(th3, 1, np.pi / 180, 1)
    lines = np.double(lines)
    condition11 = 1
    condition12 = 1

    if lines != []:
        for rho, theta in lines[:, 0, :]:

            if (theta < 80 * npi) & (theta > 0 * npi) & (condition11 == 1):
                thetaL = theta
                rhoL = rho
                condition11 = 0
            if (theta > 120 * npi) & (theta < 180 * npi) & (condition12 == 1):
                thetaR = theta
                rhoR = rho
                condition12 = 0
Exemplo n.º 22
0
def hough_line(edges, min_line_length=100, max_line_gap=10):
    lines = cv2.HoughLines(edges, 1, np.pi / 180, 125, min_line_length,
                           max_line_gap)
    lines = np.reshape(lines, (-1, 2))
    return lines
Exemplo n.º 23
0
def main():

    #for eachArg in sys.argv:
    #    print eachArg
    filename = sys.argv[1]

    image = cv2.imread(filename)
    if image is None:
        print 'Unable to open file ', filename
        return
    
    rows=image.shape[0]
    cols=image.shape[1]
    gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray,150,250,apertureSize = 3)
    # Arguments are distance resolution, angle resolution, threshold
    # Large distance resolution yields larger bins so more lines meeting
    # threshold.  Larger angular resolution yeilds fewer lines with similar
    # lines counting as the same line
    lines = cv2.HoughLines(edges,2,2*np.pi/180,100)
    if lines is None:
        print 'No lines found'
        return
      
    for line in lines:
        for rho, theta in line:
          if theta != 0: # ignore verticals    

            a = np.cos(theta)
            b = np.sin(theta)
            x0 = a*rho
            y0 = b*rho
            seglength = 1000
            x1 = int(x0 + seglength*(-b))
            y1 = int(y0 + seglength*(a))
            x2 = int(x0 - seglength*(-b))
            y2 = int(y0 - seglength*(a))
            cv2.line(image,(x1,y1),(x2,y2),(0,0,255),2)
    xtotal=0
    xcount=0
    ytotal=0
    ycount=0
    for line1,line2 in combinations(lines,2):
      rho1=line1[0][0]
      theta1=line1[0][1]
      rho2=line2[0][0]
      theta2=line2[0][1]
      #print rho1, theta1, rho2, theta2
      if theta1 != 0 and theta2 != 0: # ignore verticals    

        x0, y0 = intersection(rho1,theta1,rho2,theta2)
        xtotal+=x0
        xcount+=1
        ytotal+=y0
        ycount+=1
        cv2.circle(image, (x0,y0),3,(255,0,0),-1)

    
    cv2.circle(image, (xtotal/xcount,ytotal/ycount),50,(0,255,255),3)  
    cv2.namedWindow('Hall with Line', cv2.WINDOW_NORMAL)
    cv2.imshow('Hall with Line',image)    
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Exemplo n.º 24
0
def enderezar(entrada, salida):
    # Leer la imagen
    imagen = cv2.imread(entrada)

    # Convertirla a gris y detectar bordes
    gray = cv2.cvtColor(imagen, cv2.COLOR_BGR2GRAY)
    binaria = cv2.Canny(gray,50,150,apertureSize = 3)
    
    #cv2.imshow('Grayscale', imagen)#, binaria)

    # Usar la transformada de Hough para encontrar líneas
    # en la imagen binarizada, con una resolución de medio
    # grado (pi/720) y quedándose sólo con las líneas que
    # alcancen puntuación de 1000 o más (que serán las
    # más largas)
    lineas = cv2.HoughLines(binaria, 1, np.pi/720, 100)

    # Recopilemos qué ángulos ha encontrado la transformada
    # de hough para cada una de las líneas halladas
    angulos = []

    try:
        for linea in lineas:
            rho, theta = linea[0]
            if rho<0:
                theta = -theta
    
            # Quedarse solo con las rayas próximas a la horizontal
            # (con un error de +-10 grados)
            if not estan_cercanos(theta, np.pi/2, np.deg2rad(20)):
               continue;
               
            angulos.append(theta)
            
        from collections import Counter
        veces = Counter(angulos)
    
        # Quedémonos con los tres casos más frecuentes
        frecuentes = veces.most_common(3)
    
        # Y calculemos el promedio de esos tres casos
        suma = sum(angulo*repeticion for angulo,repeticion in frecuentes)
        repeticiones = sum(repeticion for angulo, repeticion in frecuentes)
        angulo = suma/repeticiones
    
        angulo = np.rad2deg(angulo - np.pi/2)
        print("[INFO] angulo: {:.5f}".format(angulo))
    
        W = 1200.
        height, width, depth = imagen.shape
        imgScale = W/width
        newX,newY = imagen.shape[1]*imgScale, imagen.shape[0]*imgScale
        
        # Ahora enderecemos la imagen, girando el ángulo detectado
        (h, w) = imagen.shape[:2]
        centro = (w // 2, h // 2)
        M = cv2.getRotationMatrix2D(centro, angulo, 1.0)
    
        girada = cv2.warpAffine(imagen, M, (w, h),
                    flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
        
        girada = cv2.resize(girada,(int(newX),int(newY)), interpolation = cv2.INTER_AREA)
        
            # Y volcamos a disco el resultado
        cv2.imwrite(salida, girada)
    except:        
        W = 1200.
        height, width, depth = imagen.shape
        imgScale = W/width
        newX,newY = imagen.shape[1]*imgScale, imagen.shape[0]*imgScale
        print("Solo resize")
        girada = cv2.resize(imagen,(int(newX),int(newY)), interpolation = cv2.INTER_AREA)
        cv2.imwrite(salida, girada)
Exemplo n.º 25
0
import cv2
import numpy as np

img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('grey', gray)
cv2.waitKey(0)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
cv2.imshow('edges', edges)
cv2.waitKey(0)
lines = cv2.HoughLines(edges, 1, np.pi / 180, 120)
print len(lines)
print len(lines[0])
print len(lines[0][0])
for i in lines:
    rho = i[0][0]
    theta = i[0][1]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))

    cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.imshow('lines', img)
cv2.waitKey(0)
cv2.imwrite('houghlines3.jpg', img)
Exemplo n.º 26
0
def applyHough(image, original):
    img = cv2.imread(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    #edges = cv2.Canny(gray,50,150,apertureSize = 3) #23,55
    edges = cv2.Canny(gray, 23, 60, apertureSize=3)
    lines = cv2.HoughLines(edges, 1, np.pi / 720, 120)  #150 #90
    if lines is not None:
        # number = 0;
        # x1_mean = y1_mean = x2_mean = y2_mean = 0;
        x1_list = []
        x2_list = []
        y1_list = []
        y2_list = []
        for line in lines:
            rho, theta = line[0]
            a = np.cos(theta)
            b = np.sin(theta)
            x0 = a * rho
            y0 = b * rho
            x1 = int(x0 + 1000 * (-b))
            y1 = int(y0 + 1000 * (a))
            x2 = int(x0 - 1000 * (-b))
            y2 = int(y0 - 1000 * (a))
            if (y1 <= y2):
                x1_list.append(x1)
                x2_list.append(x2)
                y1_list.append(y1)
                y2_list.append(y2)
            else:
                x1_list.append(x2)
                x2_list.append(x1)
                y1_list.append(y2)
                y2_list.append(y1)
            # number = number + 1;
            # x1_mean = (x1_mean)+(x1-x1_mean)/number
            # y1_mean = (y1_mean)+(y1-y1_mean)/number
            # x2_mean = (x2_mean)+(x2-x2_mean)/number
            # y2_mean = (y2_mean)+(y2-y2_mean)/number
        x1_median = int(np.ma.median(x1_list))
        x2_median = int(np.ma.median(x2_list))
        y1_median = int(np.ma.median(y1_list))
        y2_median = int(np.ma.median(y2_list))
        # cv2.line(original,(int(x1_mean),int(y1_mean)),(int(x2_mean),int(y2_mean)),(0,0,255),2)

        lines = cv2.HoughLinesP(edges, 0.5, np.pi / 720, 75, 70, 8)
        l = 0
        xmin = ymin = 100000
        xmax = ymax = -100000
        if lines is not None:
            for line in lines:
                x1, y1, x2, y2 = line[0]
                if (y1 < ymin): ymin = y1
                if (x1 < xmin): xmin = x1
                if (x2 > xmax): xmax = x2
                if (y2 > ymax): ymax = y2
                if (y2 < ymin): ymin = y2
                if (x2 < xmin): xmin = x2
                if (x1 > xmax): xmax = x1
                if (y1 > ymax): ymax = y1
                # cv2.line(original,(x1,y1),(x2,y2),(0,0,255),2)
            # l = math.sqrt((xmin-xmax)**2 + (ymin-ymax)**2)
        # cv2.line(original,(int(x1_mean)+int(x2_mean)-xmin,int(y2_mean)+int(y1_mean)-ymin),(int(xmin),ymin),(0,0,255),2)
        # slope_mean = abs((y2_mean - y1_mean)/(x2_mean-x1_mean))
        # slope_median = abs((y2_median - y1_median)/(x2_median-x1_median))
        # print(slope_mean-slope_median);
        # cv2.line(original,(int(x1_mean),int(y1_mean)),(int(x2_mean),int(y2_mean)),(0,0,255),2)
        global cutoff, prev_x1, prev_x2, prev_y1, prev_y2, last5_slopes
        if (x2_median - x1_median is not 0):
            slope = (y2_median - y1_median) / (x2_median - x1_median)
        else:
            slope = last5_slopes[len(last5_slopes) - 1]

        prev_slope = slope
        use_this = True

        all_neg = True
        all_pos = True
        for x in last5_slopes:
            if (x > 0):
                all_neg = False
            elif (x < 0):
                all_pos = False

        if (len(last5_slopes) > 4) and (
            (all_pos and slope < 0
             and last5_slopes[len(last5_slopes) - 1] < 200) or
            (all_neg and slope > 0
             and last5_slopes[len(last5_slopes) - 1] > -200)):
            use_this = False
        else:
            last5_slopes.append(slope)
            while (len(last5_slopes) > 5):
                last5_slopes.pop(0)

        # print(str(prev_slope) + " " + str(slope));

        # if(prev_slope != 0):
        # 	if(slope - prev_slope > epsilon or slope -prev_slope < epsilon):
        # 		slope = prev_slope;
        x_lim_up = (0 - y1_median) / slope + x1_median
        if (cutoff == 0):
            cutoff = ymax
        elif (cutoff > 0 and ymax > 0):
            cutoff = 0.9 * cutoff + 0.1 * ymax
        # print(cutoff)
        x_lim_down = (cutoff - y1_median) / slope + x1_median
        # print(str(x1_median) + " " + str(y1_median) + " " + str(x2_median) + " " + str(y2_median))
        # cv2.line(original,(int(x1_median),int(y1_median)),(int(x2_median),int(y2_median)),(0,255,255),3)
        if use_this:
            cv2.line(original, (int(x_lim_up), int(0)),
                     (int(x_lim_down), int(cutoff)), (0, 0, 255), 3)
        else:
            cv2.line(original, (int(prev_x1), int(prev_y1)),
                     (int(prev_x2), int(prev_y2)), (0, 0, 255), 3)
        prev_x1 = x_lim_up
        prev_y1 = 0
        prev_x2 = x_lim_down
        prev_y2 = cutoff
        # cv2.imshow('asd',img)
    elif persist:
        cv2.line(original, (int(prev_x1), int(prev_y1)),
                 (int(prev_x2), int(prev_y2)), (0, 0, 255), 3)
        # prev_slope = 0;
    return original
#Applying hough lines

minLineLength = 70
maxLineGap = 0.1

lines = cv2.HoughLinesP(total_gradient, 1, np.pi / 180, 5, minLineLength,
                        maxLineGap)

for x1, y1, x2, y2 in lines[0]:
    cv2.line(image_1, (x1, y1), (x2, y2), (0, 255, 0),
             thickness=2,
             lineType=8,
             shift=0)

lines = cv2.HoughLines(total_gradient, 1, np.pi / 180, 200)
for rho, theta in lines[0]:
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))

    cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 1)

#for var in range(-135, 150, 45):

cv2.imshow("Figure: Sobel Edges", total_gradient)
Exemplo n.º 28
0
def analyzeGameBoard(image, debug=False):
    """
    Determine the current state of the game board. Return a 2d array specifiying the contents of each of the nine
    spaces, one of {'X', 'O', ' '}

    :param image: Image of the game board on a blank background
    :param debug: If true, displays step-by-step visuals for debugging
    :return: A 2d array specifiying the contents of each of the nine spaces, one of {'X', 'O', ''}
    """

    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image = cv2.GaussianBlur(image, (5, 5), 0)
    binary = cv2.threshold(image, 0, 255,
                           cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

    edges = cv2.Canny(binary, 1, 254)

    if debug:
        cv2.imshow("Image", image)
        cv2.imshow("Binary", binary)
        cv2.imshow("Edges", edges)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    # Find contours based on edges
    contours = cv2.findContours(edges.copy(), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)

    # Normalize format of contours between different versions of OpenCV
    contours = imutils.grab_contours(contours)

    # Find the contour with the largest area, which should be the game board
    board2 = max(contours, key=cv2.contourArea)
    #contours.remove(board2)
    contours = sorted(contours, key=cv2.contourArea, reverse=True)
    contours = contours[1:]
    board = max(contours, key=cv2.contourArea)
    contours = sorted(contours, key=cv2.contourArea, reverse=True)
    contours = contours[1:]
    #contours.remove(board)

    mask = np.zeros_like(binary)
    cv2.drawContours(mask, [board], 0, 255, -1)
    out = np.full_like(binary, 255)
    out[mask == 255] = binary[mask == 255]

    for contour in contours:
        mask = np.zeros_like(binary)
        cv2.drawContours(mask, [contour], 0, 255, -1)
        out[mask == 255] = 255
        if debug:
            cv2.imshow('t', mask)
            cv2.imshow('h', out)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

    if debug:
        cv2.imshow('Original', binary)
        cv2.imshow('Mask', mask)
        cv2.imshow('Output', out)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    boardEdges = cv2.Canny(out, 1, 254)

    lines = cv2.HoughLines(boardEdges, 2, np.pi / 90, 100)

    lines = mergeLines(lines)
    vLines, hLines = findExtremeLines(lines)
    lines = vLines + hLines

    if debug:
        for line in lines:
            for rho, theta in line:
                a = np.cos(theta)
                b = np.sin(theta)
                x0 = a * rho
                y0 = b * rho
                x1 = int(x0 + 1000 * (-b))
                y1 = int(y0 + 1000 * (a))
                x2 = int(x0 - 1000 * (-b))
                y2 = int(y0 - 1000 * (a))
                cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
        cv2.imshow("i", image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    # Remove the game board from the image
    binary[out == 0] = 255

    if debug:
        cv2.imshow('mask', mask)
        cv2.imshow('out', out)
        cv2.imshow('binary', binary)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    tlPoint, trPoint, blPoint, brPoint = getAllIntersections(vLines, hLines)
    upperMiddle = int((tlPoint[0] + trPoint[0]) / 2)
    middleLeft = int((tlPoint[1] + blPoint[1]) / 2)
    middleRight = int((trPoint[1] + brPoint[1]) / 2)
    lowerMiddle = int((blPoint[0] + brPoint[0]) / 2)

    yMax = binary.shape[0] - 1
    xMax = binary.shape[1] - 1

    spaces = np.empty((3, 3), dtype=object)

    if debug:
        image[tlPoint[0], tlPoint[1]] = 255
        image[trPoint[0], trPoint[1]] = 255
        image[blPoint[0], blPoint[1]] = 255
        image[brPoint[0], brPoint[1]] = 255
        cv2.imshow('h', image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    spaces[0][0] = binary[0:tlPoint[0], 0:tlPoint[1]]
    spaces[0][1] = binary[0:upperMiddle, tlPoint[1]:trPoint[1]]
    spaces[0][2] = binary[0:trPoint[0], trPoint[1]:xMax]
    spaces[1][0] = binary[tlPoint[0]:blPoint[0], 0:middleLeft]
    spaces[1][1] = binary[upperMiddle:lowerMiddle, middleLeft:middleRight]
    spaces[1][2] = binary[trPoint[0]:brPoint[0], middleRight:xMax]
    spaces[2][0] = binary[blPoint[0]:yMax, 0:blPoint[1]]
    spaces[2][1] = binary[lowerMiddle:yMax, blPoint[1]:brPoint[1]]
    spaces[2][2] = binary[brPoint[0]:yMax, brPoint[1]:xMax]

    gameState = np.full((3, 3), ' ')

    for i in range(3):
        for j in range(3):
            gameState[i][j] = analyzeSpace(spaces[i][j], debug)

    return gameState
Exemplo n.º 29
0
    def run(self):
        if self.active:
            #pub.sendMessage("transectline", message = [1, 2, 3, 4, 5, 6])
            #pub_to_manager("transectline", message = [1, 2, 3, 4, 5, 6])
            #print("active: ",self.active)
            #print("show: ", self.show)
            if self.captureON == False:
                if self.simulation==False:
                    self.cap = cv2.VideoCapture(0)
                    self.captureON = True


                
                '''

                cv2.namedWindow('Sliders')
                cv2.createTrackbar('H','Sliders',0,255,nothing)
                cv2.createTrackbar('H_Range','Sliders',0,255,nothing)
                cv2.createTrackbar('S','Sliders',0,255,nothing)
                cv2.createTrackbar('S_Range','Sliders',0,255,nothing)
                cv2.createTrackbar('V','Sliders',0,255,nothing)
                cv2.createTrackbar('V_Range','Sliders',0,255,nothing)
                '''
                
            ret, frame = self.cap.read()

            height = frame.shape[0]
            width = frame.shape[1]
            origin = (0, 0)
            center = (width//2, height//2)

            process = np.zeros([height,width,1],dtype=np.uint8)
            process.fill(255)

            
            hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
            H = cv2.getTrackbarPos('H','Sliders')
            H = 102
            H_Range = cv2.getTrackbarPos('H_Range','Sliders')
            H_Range = 51
            S = cv2.getTrackbarPos('S','Sliders')
            S = 51
            S_Range = cv2.getTrackbarPos('S_Range','Sliders')
            S_Range = 128
            V = cv2.getTrackbarPos('V','Sliders')
            V = 102
            V_Range = cv2.getTrackbarPos('V_Range','Sliders')
            V_Range = 71
            lower_blue = np.array([H,S,V]) #110-130
            upper_blue = np.array([SliderLimit(H, H_Range),SliderLimit(S, S_Range),SliderLimit(V, V_Range)])


            
            mask = cv2.inRange(hsv, lower_blue, upper_blue)
            res = cv2.bitwise_and(frame,frame, mask= mask)
            median = cv2.medianBlur(res,5)
            
            #cv2.imshow('res',res)
            grayscaled = cv2.cvtColor(median,cv2.COLOR_BGR2GRAY)
            #cv2.imshow('grayscaled',grayscaled)
            '''
            kernel = np.ones((10,10),np.uint8)
            erosion = cv2.erode(grayscaled,kernel,iterations = 1)
            cv2.imshow('erosion',erosion)
            '''
            #retval, threshold = cv2.threshold(grayscaled, 10, 255, cv2.THRESH_BINARY)

            #cv2.imshow('gray', grayscaled)
            # The bitwise and of the frame and mask is done so  
            # that only the blue coloured objects are highlighted  
            # and stored in res 
            #res = cv2.bitwise_and(frame,frame, mask= mask) 
            #Filter out all colours except for a range of blue
            
            #gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
            #cv2.imshow('gray',gray)

            edges = cv2.Canny(grayscaled,50,150,apertureSize = 3)
            #cv2.imshow('edges',edges)
            '''
            theta = np.pi / 180
            rho = 50
            threshold = 15  # minimum number of votes (intersections in Hough grid cell)
            min_line_length = 50  # minimum number of pixels making up a line
            max_line_gap = 20
            lines = cv2.HoughLinesP(edges, rho, theta, threshold, np.array([]),min_line_length, max_line_gap)
            '''
            point1_x, point1_y, point2_x, point2_y = width//2, height, width//2, 0
            lines = cv2.HoughLines(edges,10,np.pi/180, 200, 0) 
            line_amount = 4
            coordinates = []
            lines_seen = line_amount
            #Lines = [line_attr() for i in range(line_amount)]
            Lines = [] 
            pos_length = 0
            pos_len_count = 1
            neg_length = 0
            neg_len_count = 1
            for i in range(0, line_amount):
                try:
                    for r,theta in lines[i]:
                        
                        # Stores the value of cos(theta) in a 
                        a = np.cos(theta) 
                      
                        # Stores the value of sin(theta) in b 
                        b = np.sin(theta) 
                          
                        # x0 stores the value rcos(theta) 
                        x0 = a*r 
                          
                        # y0 stores the value rsin(theta) 
                        y0 = b*r 
                          
                        # x1 stores the rounded off value of (rcos(theta)-1000sin(theta)) 
                        x1 = int(x0 + 1000*(-b)) 
                          
                        # y1 stores the rounded off value of (rsin(theta)+1000cos(theta)) 
                        y1 = int(y0 + 1000*(a)) 
                      
                        # x2 stores the rounded off value of (rcos(theta)+1000sin(theta)) 
                        x2 = int(x0 - 1000*(-b))

                        # y2 stores the rounded off value of (rsin(theta)-1000cos(theta)) 
                        y2 = int(y0 - 1000*(a))

                        ###
                        
                        #y - y2 = s(x - x2)
                        #y = sx - sx2 + y2
                        s = get_gradient((x1,y1), (x2, y2))
                        t = -x2*s+y2

                        ###
                        
                        cv2.line(process, (x1, y1), (x2,y2), (0, 0, 255), 1)

                        m = -1/s
                        k = -m*center[0] + center[1]

                        ###
                        
                        #y - y2 = s(x - x2)
                        #y = sx - sx2 + y2
                        #y = sx + t

                        #y - centery = m(x - centerx)
                        #y = mx - mcenterx + centery
                        #y = mx + k

                        #sx + t = mx + k
                        #x(m-s) = t-k
                        #x = (t-k)/(m-s)

                        x_intersect = round((t-k)/(m-s))
                        y_intersect = round(s*x_intersect + t)
                        intersect = (x_intersect, y_intersect)
                       
                        remove = False
                        for coordinate in coordinates:
                            if within_range(x_intersect, coordinate[0]-50, coordinate[0]+50) and within_range(y_intersect, coordinate[1]-50, coordinate[1]+50):
                                line_amount -= 1
                                lines_seen -= 1
                                remove = True
                                continue  

                        if remove == True:
                            continue
                        coordinates.append(intersect)
           

                        ###
                        
                        cv2.line(process,(center),(intersect),(0,0,255),1)
                        cv2.circle(process, (intersect), 2, (0, 0, 255), 2)
                        cv2.circle(process, (center), 2, (0, 0, 255), 2)

                        if x_intersect < center[0]:
                            length = -1*get_length((center), (intersect))
                            neg_length = neg_length + length
                            neg_len_count +=1
                        else:
                            length = get_length((center), (intersect))
                            pos_length = pos_length + length
                            pos_len_count += 1
                        abs_length = abs(length)
                        
                        angle = np.arctan(self.relative(intersect, center)[1]/self.relative(intersect, center)[0])
                        #print(angle)
                        if self.relative(intersect, center)[1]>0 and self.relative(intersect, center)[0] < 0:
                            angle = np.pi + angle
                        if self.relative(intersect, center)[1]<0 and self.relative(intersect, center)[0] < 0:
                            angle = angle + np.pi
                        if self.relative(intersect, center)[1]<0 and self.relative(intersect, center)[0] > 0:
                            angle = 2*np.pi - angle*-1
                        
                        ###

                        #y = sx + t
                        #0 = sx + t
                        #-t = sx
                        #x = -t/s

                        top_intersect_x = -t/s
                        top_intersect = (top_intersect_x, 0)

                        ###
                        
                        #Lines[i].set((length, angle, top_intersect_x))
                        Lines = Lines + [line_attr()]
                        Lines[-1].set((length, angle, top_intersect_x))
                except:
                    lines_seen = lines_seen - 1
            

            if lines_seen > 0:
                neg_length = neg_length/neg_len_count
                pos_length = pos_length/pos_len_count
                Length_Deviation = pos_length + neg_length
                if pos_length == 0 or neg_length == 0: #If one side gone
                    pos_length = pos_length *2
                    neg_length = neg_length *2
                Line_Distance = (abs(neg_length) + pos_length)/2

                
                Total_Top = 0
                Top_pos = [0, 0] #value, amount
                Top_neg = [0, 0]
                Total_Angle = 0
                Angles = lines_seen
                #Total_Acute_Angle = 0
                #Total_Obtuse_Angle = 0
                #Total_Right_Angle = 0
                #Angle_Counter = [1, 1, 1, 3]  #Acute, Obtuse, Right, Types
                for i in range(line_amount):
                    try:
                        if Lines[i].top_intersect_x > center[0]:
                            Top_pos[0] = Top_pos[0] + Lines[i].top_intersect_x
                            Top_pos[1] = Top_pos[1] + 1
                        elif Lines[i].top_intersect_x < center[0]:
                            Top_neg[0] = Top_neg[0] + Lines[i].top_intersect_x
                            Top_neg[1] = Top_neg[1] + 1

                        if Lines[i].angle < np.pi/2:
                            Angle = Lines[i].angle + np.pi/2
                        elif Lines[i].angle > np.pi/2 and Lines[i].angle < np.pi:
                            Angle = Lines[i].angle - np.pi/2
                        elif Lines[i].angle> np.pi and Lines[i].angle< np.pi*3/2:
                            Angle = Lines[i].angle - np.pi/2
                        elif Lines[i].angle> np.pi*3/2:
                            Angle = Lines[i].angle - np.pi*3/2
                        else:
                            Angle = 0
                        #print(Angle)
                        Total_Angle = Total_Angle + Angle

                        '''
                        if Angle < np.pi/2:
                            Total_Acute_Angle = Total_Acute_Angle + Angle
                            Angle_Counter[0] += 1
                        elif Angle > np.pi/2:
                            Total_Obtuse_Angle = Total_Obtuse_Angle + Angle
                            Angle_Counter[1] += 1
                        elif Angle == np.pi/2:
                            Total_Right_Angle = Total_Right_Angle + Angle
                            Angle_Counter[2] += 1
                        '''
                    except:
                        pass
                Total_Angle = Total_Angle/Angles
                    
                if Top_pos[1] != 0 and Top_neg[1] != 0:
                    Total_Top = (Top_pos[0]/Top_pos[1] + Top_neg[0]/Top_neg[1])/2
                elif Top_pos[1] == 0:
                    Total_Top = (Top_neg[0]/Top_neg[1])
                elif Top_neg[1] == 0:
                    Total_Top = (Top_pos[0]/Top_pos[1])
                '''    
                Angles.append(Total_Acute_Angle/Angle_Counter[0])
                Angles.append(Total_Obtuse_Angle/Angle_Counter[1])
                Angles.append(Total_Right_Angle/Angle_Counter[2])
                
                for i in range(3):
                    if Angle_Counter[i] == 1:
                        Angle_Counter[3] -= 1
                    else:
                        pass
                        Total_Angle = Total_Angle + Angles[i]
                Total_Angle = Total_Angle/Angle_Counter[3]
                '''
                
                cv2.circle(process, (round(Total_Top), 0), 2, (0, 0, 255), 2)

            else:
                Total_Top = center[0]
                Line_Distance = (Updown_Deadzone[0]+Updown_Deadzone[1])/2
                Total_Angle = np.pi/2
                Length_Deviation = 0

            '''
            if Total_Top <center[0] - 30:
                print('Move Right')
            elif Total_Top > center[0] - 30 and Total_Top<center[0] + 30:
                print("Don't Move")
            else:
                print('Move Left')

            
            if Total_Angle > np.pi/2 - 0.2 and Total_Angle < np.pi/2 + 0.2:
                print("Don't turn")
            elif Total_Angle > np.pi/2 + 0.2:
                print('Turn Left')
            elif Total_Angle < np.pi/2 - 0.2:
                print('Turn Right')

            if Line_Distance > 100:
                print("Go Higher")
            elif Line_Distance<70:
                print("Go Lower")
            else:
                print("Height OK")
            print('\n\n\n\n\n\n')
            '''

            '''
            #Strafe_Power = Length_Deviation/(width/2)
            Yaw_Power =(Total_Top-width//2)/(width//2)
            Updown_Power = 0
            if Line_Distance > 150:
                Updown_Power = (150-Line_Distance)/100
                if Updown_Power > 1:
                    Updown_Power = 1
            elif Line_Distance < 100:
                Updown_Power = (100-Line_Distance)/100
            
            Message = (Strafe_Power,Drive_Power,Yaw_Power,Updown_Power,0,0) #Strafe, drive, yaw, updown, 0, 0
            '''
           
            if Total_Top > center[0] - Strafe_Deadzone and Total_Top<center[0] + Strafe_Deadzone:
                Total_Top = width/2
            Strafe_Power = (Total_Top-width/2)/(width/2)
            if Strafe_Power > 1:
                Strafe_Power = 1
            elif Strafe_Power < -1:
                Strafe_Power = -1

            if Total_Angle > np.pi/2 - Yaw_Deadzone and Total_Angle < np.pi/2 + Yaw_Deadzone:
                Total_Angle = np.pi/2
            Yaw_Power = (-Total_Angle+np.pi/2)/(np.pi/2)

            if Line_Distance < Updown_Deadzone[1] and Line_Distance>Updown_Deadzone[0]:
                Line_Distance = max_line_distance/2
            elif Line_Distance<=Updown_Deadzone[0]:
                Line_Distance = Line_Distance*((max_line_distance/2)/Updown_Deadzone[0])
            elif Line_Distance >= Updown_Deadzone[1]:
                Line_Distance = ((Line_Distance - Updown_Deadzone[1])*((max_line_distance/2)/(max_line_distance-Updown_Deadzone[1])))+max_line_distance/2
            Updown_Power = (Line_Distance-max_line_distance/2)/(max_line_distance/2)
            if Updown_Power > 1:
                Updown_Power = 1
            elif Updown_Power < -1:
                Updown_Power = -1

            #Value Modifiers
            Drive_Power = self.drive_power          #0-1
            Strafe_Power = PowerFunction(Strafe_Power, self.strafe_mod)
            Yaw_Power = PowerFunction(Yaw_Power, self.yaw_mod)
            Updown_Power = PowerFunction(Updown_Power, self.updown_mod)

            if self.show:
                cv2.imshow('frame',frame)
                cv2.imshow('process', process)

            Powers = [Strafe_Power,Drive_Power,Yaw_Power,Updown_Power,0,0] #Strafe, drive, yaw, updown, 0, 0
            #print(Powers)
            cv2.waitKey(1)
            #pub.sendMessage("transectline", message = Powers)
            #a = [1, 2, 3, 4, 5, 6]
            #pub_to_manager("control-movement", message = ("transectline", Powers))
            pub.sendMessage("control-movement", message = ("transectline", Powers))
        else:
            if self.captureON == True:
                self.cap.release()
                cv2.destroyAllWindows()
                self.captureON = False
Exemplo n.º 30
0
for line in lines:
    x1,y1,x2,y2 = line[0]
    cv.line(img,(x1,y1),(x2,y2),(0,255,0),2)

cv.imshow("result", img)
cv.waitKey(0)



# HoughLines Code

img = cv.imread('hallway.jpg')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,50,150)
lines = cv.HoughLines(edges,1,np.pi/180,200)

for line in lines:
    rho,theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a*rho
    y0 = b*rho
    x1 = int(x0 + 1000*(-b))
    y1 = int(y0 + 1000*(a))
    x2 = int(x0 - 1000*(-b))
    y2 = int(y0 - 1000*(a))
    cv.line(img,(x1,y1),(x2,y2),(0,0,255),2)

cv.imshow("result", img)
cv.waitKey(0)