Exemplo n.º 1
0
def change_constrast(img):
    lookuptable = np.empty((1, 256), np.uint8)
    gamma = 3.2
    for i in range(256):
        lookuptable[0, i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255)
    return cv2.LUT(img, lookuptable)
Exemplo n.º 2
0
def rgb_color_transformation():
    image_dir_path = os.path.join(os.getcwd(), "assets/img")
    out_path = os.path.join(os.getcwd(), "out/rgb-color-transformation")
    ext = "jpg"

    # find all images in the directory
    images = glob.glob(f"{image_dir_path}/*.{ext}")

    # exit immediately when there are no images present on the folder
    num_images = len(images)
    if num_images == 0:
        print(f"No images present on the directory: {image_dir_path}")
        sys.exit(1)

    print(f"Reading all images from the directory: {image_dir_path}")
    print(f"Output will be saved in: {out_path}")

    # delete the folder to make sure we are create new files
    if os.path.exists(out_path):
        rmtree(out_path)

    # create the output folder if not exists
    if not os.path.exists(out_path):
        os.makedirs(out_path)

    a = 255
    b = (2 * np.pi) / 255
    c = np.pi / 5

    # create empty numpy array needed by the lookup tables
    reds = np.array([])
    greens = np.array([])
    blues = np.array([])

    # pre-compute and assign computed values in the lookup table for each channel
    for i in np.arange(0, 256):
        bx = b * i

        # perform transformation on the r channel: R = a | sin(bx) |
        red = a * np.absolute(np.sin(bx))

        # perform transformation on the g channel: G = a | sin(bx + c) |
        green = a * np.absolute(np.sin(bx + c))

        # perform transformation on the b channel: B = a | sin(bx + 2c) |
        blue = a * np.absolute(np.sin(bx + (2 * c)))

        # append to the numpy array
        reds = np.append(reds, [red])
        greens = np.append(greens, [green])
        blues = np.append(blues, [blue])

    # iterate all found images and colorize them then write to the filesystem
    for image in images:
        basename = os.path.basename(image)
        filename, _ = os.path.splitext(basename)

        # read image in grayscale
        image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)

        # apply lookup table each matrix: red, green and blue
        r_channel = cv2.LUT(image.copy(), reds)
        g_channel = cv2.LUT(image.copy(), greens)
        b_channel = cv2.LUT(image.copy(), blues)

        # merge the channels
        colored = cv2.merge([b_channel, g_channel, r_channel])

        # write to the filesystem
        cv2.imwrite(f"{out_path}/{filename}.jpg", colored)

    print("Done processing images.")
Exemplo n.º 3
0
    else:
        outros.append(paciente + str(iteradorPacientes))

    iteradorPacientes += 1

    start, end = getStartEnd(image.shape[1])
    segmentos = image[:, start:end, :]
    for i in range(RANGE):
        plt.imsave(diretorioTrain + 'img' + str(iterador) + '.jpg',
                   arr=segmentos[:, i, :],
                   cmap='gray')
        imageSaved = cv2.imread(
            diretorioTrain + 'img' + str(iterador) + '.jpg', 0)
        alturaX, larguraX = imageSaved.shape
        blur = cv2.medianBlur(imageSaved, 3)
        blank_image = cv2.LUT(blur, table)
        resized_image = cv2.resize(blank_image, tamanho_imagem)
        if not CROPPED:
            altura, largura = resized_image.shape
            alturaMeio = altura // 2
            larguraMeio = largura // 2
            larguraInicio = 0
            larguraFim = 0
            alturaInicio = 0
            for j in range(largura):
                if resized_image[alturaMeio, j] > 50:
                    larguraInicio = j
                    break
            for j in reversed(range(largura)):
                if resized_image[alturaMeio, j] > 50:
                    larguraFim = j
Exemplo n.º 4
0
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--filename")
args = vars(ap.parse_args())

filename = "../../data/images/candle.jpg"
if args['filename']:
    filename = args['filename']

img = cv2.imread(filename)

# specify gamma
gamma = 1.5

# Full range of intensity values
fullRange = np.arange(0, 256)

#create LookUp table
lut = np.uint8(255 * np.power((fullRange / 255.0), gamma))

# Transform the image using LUT - it maps the pixel intensities in the input to the output using values from lut
output = cv2.LUT(img, lut)

# Show the output
combined = np.hstack([img, output])
cv2.namedWindow("Original Image   --   Gamma enhancement", cv2.WINDOW_AUTOSIZE)
cv2.imshow("Original Image   --   Gamma enhancement", combined)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("results/gammaAdjusted.jpg", output)
Exemplo n.º 5
0
def _adjust_contrast_torchvision_uint8(img, factor, mean):
    lut = np.arange(0, 256) * factor
    lut = lut + mean * (1 - factor)
    lut = clip(lut, img.dtype, 255)

    return cv2.LUT(img, lut)
Exemplo n.º 6
0
def extend_images(img, label_ext, num_create, angle=15, pixels=2, gamma=2):

    if num_create == 1:
        global new_img
        new_img.append(img)

    hist, bins = np.histogram(img.ravel(), 256, [0, 256])
    hist_avg = np.argmax(hist)

    # Augment borders of image
    top = int(0.1 * img.shape[0])  # shape[0] = rows
    bottom = top
    left = int(0.1 * img.shape[1])  # shape[1] = cols
    right = left
    dst = cv2.copyMakeBorder(img, top, bottom, left, right,
                             cv2.BORDER_REPLICATE, None)
    resized_image = cv2.resize(dst, (80, 80))

    # Rotate
    if num_create == 1: angle = 14
    else: angle = -10
    M = cv2.getRotationMatrix2D((16, 16), angle, 1)
    image1 = cv2.warpAffine(src=resized_image, M=M, dsize=(80, 80))

    # Translate
    tx = 1
    if num_create == 1: ty = -1
    else: ty = 1
    M = np.float32([[1, 0, tx], [0, 1, ty]])
    image2 = cv2.warpAffine(src=image1, M=M, dsize=(80, 80))

    # Bright
    if np.argmax(hist) >= 190: gamma = 0.6180
    else: gamma = 1.618033
    invGamma = 1.0 / gamma
    table = np.array([((i / 255.0)**invGamma) * 255
                      for i in np.arange(0, 256)]).astype("uint8")
    image3 = cv2.LUT(image2, table)

    # Crop image and resize
    if num_create == 1:
        image_new = image3[0:65, 15:]
    else:
        image_new = image3[12:78, 2:72]

    resized_image = cv2.resize(image_new, (32, 32))

    global count_images_ext
    count_images_ext += 1
    if num_create == 1:
        global images_ext
        images_ext.append(resized_image)
        global label_images_ext
        label_images_ext.append(label_ext)
    else:
        global images_ext2
        images_ext2.append(resized_image)
        global label_images_ext2
        label_images_ext2.append(label_ext)

    if count_images_ext % 10 == 0 and plot == True:
        # Plot samples
        num = int((count_images_ext / 10)) - 1
        sp = 1
        fig = plt.figure(figsize=(4, 8))
        fig.suptitle("Normal img - Create img", fontsize=14)
        for r in range(5):
            for c in range(3):
                ax = plt.subplot(5, 3, sp)
                img_ext_1 = new_img[r + (5 * num)]
                img_ext_2 = images_ext[r + (5 * num)]
                img_ext_3 = images_ext2[r + (5 * num)]
                if c == 0:
                    ax.imshow(img_ext_1, cmap=cm.Greys_r)
                elif c == 1:
                    ax.imshow(img_ext_2, cmap=cm.Greys_r)
                else:
                    ax.imshow(img_ext_3, cmap=cm.Greys_r)
                ax.axis('off')
                #ax.set(xlabel='Hola', ylabel=str(label_images_ext[r]))
                #ax.set_title("Class: "+str(label_images_ext[r]),fontsize=10)
                sp += 1

        plt.show()
    return resized_image
Exemplo n.º 7
0
adjust_save_dir = r'/hdd/Temp/INRIA_gamma/adjust'
model_dir = r'/hdd6/Models/UnetCrop_inria_aug_gamma_0_PS(572, 572)_BS5_EP100_LR0.0001_DS40_DR0.1_SFN32'
imgs = sorted(glob(os.path.join(file_dir, '*_RGB.tif')))
n = len(imgs) * 5000 ** 2

for gamma in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2]:
    tf.reset_default_graph()
    img_mean = np.zeros(3)

    # make new imgs
    invGamma = 1.0 / gamma
    table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype('uint8')
    for file in tqdm(imgs):
        img = imageio.imread(file)
        gt = imageio.imread(file[:-8] + '_GT.tif')
        img_adjust = cv2.LUT(img, table)
        img_mean += get_sum_of_channel(img_adjust)
        img_name = os.path.basename(file)
        gt_name = os.path.basename(file[:-8] + '_GT.tif')
        imageio.imsave(os.path.join(adjust_save_dir, img_name), img_adjust)
        imageio.imsave(os.path.join(adjust_save_dir, gt_name), gt/255)

    img_mean = img_mean / n
    print(img_mean)

    file_list_valid = [[os.path.basename(x)] for x in sorted(glob(os.path.join(adjust_save_dir, '*_RGB.tif')))]
    file_list_valid_truth = [os.path.basename(x) for x in sorted(glob(os.path.join(adjust_save_dir, '*_GT.tif')))]

    # make the model
    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, input_size[0], input_size[1], 3], name='X')
def brighten(img):
    res = cv2.LUT(img, table)
    return res
Exemplo n.º 9
0
def gammacorrect(img, gamma):
    lookUpTable = np.empty((1, 256), np.uint8)
    for i in range(256):
        lookUpTable[0, i] = np.clip(math.pow(i / 255.0, gamma) * 255.0, 0, 255)
    return cv2.LUT(img, lookUpTable)
Exemplo n.º 10
0
    look_up_table = np.ones((256, 1), dtype = 'uint8' ) * 0

    for i in range(256):

        if i < 64:
        
          look_up_table[i][0] = 0

        elif i < 128:

          look_up_table[i][0] = 100

        elif i < 192:

          look_up_table[i][0] = 200

        else:

          look_up_table[i][0] = 300

    # 画像の読み込み
    img_src = cv2.imread("./image/sora2.jpg", 1)

    # ソラリゼーション後の出力
    img_post = cv2.LUT(img_src, look_up_table)

    # 表示
    cv2.imshow("Show POSTERIZATION Image", img_post)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Exemplo n.º 11
0
import subprocess

import pytesseract as ocr
import cv2 as cv
import numpy as np

img = cv.imread('Pic/1212.jpg', 0)
# alpha and beta convert to adjust contrast
new_image = cv.convertScaleAbs(img, alpha=0.7, beta=80)
cv.imshow('contrast', new_image)
# gamma convert to adjust brightness
lookUpTable = np.empty((1, 256), np.uint8)
for i in range(256):
    lookUpTable[0, i] = np.clip(pow(i / 255.0, 5) * 255.0, 0, 255)
cvt = cv.LUT(img, lookUpTable)
res = ocr.image_to_string(cvt)
print(res)
cv.imshow('img', cvt)

if cv.waitKey(0):
    cv.destroyAllWindows()
Exemplo n.º 12
0
def gamma_trans(img, gamma):
    # 具体做法是先归一划到1,然后Gamma作为指数值求出新的像素值再还原
    gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]
    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
    # 实现映射用的是OpenCV查表函数
    return cv2.LUT(img, gamma_table)
Exemplo n.º 13
0
def adjust_gamma(image, gamma):
    #build a lookup table and map pixel values(0,255) to their adjusted gamma values
    invGamma = 1.0/gamma
    table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")
    
    return cv2.LUT(image, table) #apply gamma correction using the lookup table
 def adjust_gamma(self, image, gamma=1.0):
     inv_gamma = 1.0 / gamma
     table = np.array((np.arange(0, 256) / 255.0)**inv_gamma * 255,
                      dtype="uint8")
     return cv2.LUT(image, table)
Exemplo n.º 15
0
def division(img1, img2):
    img2 = cv.LUT(img2, mapeo_negativo())
    img3 = img1 * img2
    img3 /= img3.max()
    img3 *= 255
    return img3
Exemplo n.º 16
0
    look_up_table_g = np.ones((256, 1), dtype='uint8') * 0
    look_up_table_b = np.ones((256, 1), dtype='uint8') * 0

    for i in range(256):

        各RGBごとのルックアップテーブルを作成
        look_up_table_r[i][0] = get_lookuptable_r(i)
        look_up_table_g[i][0] = get_lookuptable_g(i)
        look_up_table_b[i][0] = get_lookuptable_b(i)

    # 画像の読み込み
    img_src = cv2.imread("./image/sora2.jpg", 1)
    # 複数色のチャンネルを分割して配列で取得
    # img_bgr[0] に青, img_bgr[1]に緑,img_bgr[2]に赤が入る。

    # 読み込んだ画像のグレースケール化
    img_gry = cv2.cvtColor(img_src, cv2.COLOR_BGR2GRAY)

    # 擬似カラー化
    img_pcp_r = cv2.LUT(img_gry, look_up_table_r)
    img_pcp_g = cv2.LUT(img_gry, look_up_table_g)
    img_pcp_b = cv2.LUT(img_gry, look_up_table_b)

    # 各擬似カラー化した画像をマージ
    img_mrg = cv2.merge((img_pcp_b, img_pcp_g, img_pcp_r))

    # 表示
    cv2.imshow("Show Pseudo Color Processing Image", img_mrg)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Exemplo n.º 17
0
def binarizacionPorTramos(img, inf, sup):
    tablaLut = np.array(range(0, 256))  #Genero un array desde 0 a 255
    tablaLut[0:inf] = 0  #Trunco
    tablaLut[sup:256] = 0
    return cv.LUT(img, tablaLut)  #Aplico la transformación
Exemplo n.º 18
0
    def _get_batch(self):
        # self._batch = self.rec.next()

        data = np.zeros((self.batch_size, self.data_shape[0],
                         self.data_shape[1], self.data_shape[2]))
        label = np.ones((self.batch_size, 1206)) * -1
        label[:, :3] = np.array(list(self.data_shape))
        seg_out_label = mx.nd.zeros(
            (self.batch_size, self.data_shape[1] / 4, self.data_shape[2] / 4))
        self._fnames = []
        for batch_idx in xrange(self.batch_size):
            item = self.rec.read_idx(self.index_table[self.curr_index])
            header, img = mx.recordio.unpack_img(item)
            hdr = np.array([header.label.shape[0]] + header.label.tolist())
            id0 = header.id
            seg = cv2.imread(self.imglst[str(id0)], -1)
            self._fnames.append(self.imglst[str(id0)])
            if self.enable_aug:
                assert seg is not None, self.imglst[str(id0)] + " not found."
                img, hdr, seg = self._get_augmented(img, hdr, seg,
                                                    self.data_shape)
            else:
                img, hdr, seg = self._get_resized(img, hdr, seg,
                                                  self.data_shape)
            for chidx in xrange(3):
                data[batch_idx,
                     chidx, :, :] = img[:, :,
                                        2 - chidx] - self.mean_pixels[chidx]
            if seg is not None:
                hh, ww = seg.shape
                seg = cv2.resize(seg, (ww / 4, hh / 4),
                                 interpolation=cv2.INTER_NEAREST)
                seg = cv2.LUT(seg, self.lut).astype(
                    np.uint8)  # apply colormap to segmentation label
                seg_out_label[batch_idx, :, :] = seg.reshape(
                    (1, self.data_shape[1] / 4, self.data_shape[2] / 4))
            label[batch_idx, 3:3 + hdr.shape[0]] = hdr
            self.curr_index += 1
        self._batch = mx.io.DataBatch(
            data=[mx.ndarray.array(data)],
            label=[mx.ndarray.array(label), seg_out_label])

        if self.provide_label is None:
            # estimate the label shape for the first batch, always reshape to n*5
            first_label = self._batch.label[0][0].asnumpy()
            print(map(int, first_label[:6]))
            print(", ".join(map(lambda x: "%.3f" % x, first_label[6:12])))
            print(", ".join(map(lambda x: "%.3f" % x, first_label[12:18])))
            self.batch_size = self._batch.label[0].shape[0]
            self.label_header_width = int(first_label[4])
            self.label_object_width = int(first_label[5])
            assert self.label_object_width >= 5, "object width must >=5"
            self.label_start = 4 + self.label_header_width
            self.max_objects = (first_label.size -
                                self.label_start) // self.label_object_width
            self.label_shape = (self.batch_size, self.max_objects,
                                self.label_object_width)
            self.label_end = self.label_start + self.max_objects * self.label_object_width
            self.provide_label = [('label_det', self.label_shape),
                                  ('seg_out_label', seg_out_label.shape)]
            print(self.provide_label)

        # modify label
        label = self._batch.label[0].asnumpy()
        label = label[:, self.label_start:self.label_end].reshape(
            (self.batch_size, self.max_objects, self.label_object_width))
        self._batch.label = [mx.nd.array(label), seg_out_label]
def gamma_transform(image, gamma=2):
    invGamma = 1.0 / gamma
    table = np.array([((i / 255.0)**invGamma) * 255
                      for i in np.arange(0, 256)]).astype("uint8")

    return cv2.LUT(image, table)
def adjust_gamma(image, gamma=0.8):  
    """The nonlinearlity convert between human visual and display screen""" 
    invGamma = 1.0 / gamma
    table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")
    return cv2.LUT(image, table)
Exemplo n.º 21
0
def main(username, img, anns, weight_, m):
    # get image size, basically height and width
    height, width, channels = img.shape
    heightAnns, widthAnns = anns.shape

    if (widthAnns != width):
        img = cv.resize(img, (widthAnns, heightAnns))

    height, width, channels = img.shape

    # flattening (i.e. vectorizing) matrices to pass it to C++ function (** OPENCV LOADS BGR RATHER THAN RGB!)
    img_b = img[:, :, 0].flatten()  # R channel
    img_g = img[:, :, 1].flatten()  # G channel
    img_r = img[:, :, 2].flatten()  # B channel

    img_b = img_b.astype(np.int32)
    img_g = img_g.astype(np.int32)
    img_r = img_r.astype(np.int32)

    # image size
    sz = width * height

    # load PASCAL colormap in CV format
    lut = np.load('static/images/PASCALlutW.npy')

    ## RGR parameters
    # fixed parameters
    # m = .1  # theta_m: balance between
    numSets = 8  # number of seeds sets (samplings)
    # cellSize = 10-int(weight_)   # average spacing between samples
    cellSize = 1.333  # average spacing between samples

    # Rectangular Kernel - equal to strel in matlab
    SE = cv.getStructuringElement(
        cv.MORPH_RECT, (80, 80))  # used for identifying far background

    # RGR - refine each class
    # list of annotated classes
    clsList = np.unique(anns)
    clsList = np.delete(clsList, 0)  # remove class 0
    numCls = clsList.size  # number of classes

    # annotations masks per class
    clsMap = np.zeros((height, width, numCls))
    for itCls in range(0, numCls):
        np.putmask(clsMap[:, :, itCls], anns == clsList[itCls], 1)

    # mask of annotated pixels:
    # in this case, only annotated traces are high-confidence (index 2),
    # all others are uncertain (index 0)
    preSeg = np.int32(np.zeros((height, width)))
    np.putmask(preSeg, anns > 0, 2)
    RoI = preSeg

    # identify all high confidence pixels composing the RoI
    area = np.count_nonzero(RoI)

    # R_H is the high confidence region, the union of R_nB and R_F
    R_H = np.nonzero(RoI.flatten('F') > 0)
    R_H = R_H[0]

    # number of seeds to be sampled is defined by the ratio between
    # |R_H| and desired spacing between seeds (cellSize)
    # round up
    numSamples = np.ceil(area / cellSize)

    preSeg = preSeg.flatten()

    # matrix that will contain the scoremaps for each iteration
    # ref_cls = np.zeros((height, width, numCls, numSets),dtype=float)
    ref_cls = np.zeros((height * width * numCls, numSets), dtype=float)

    num_cores = multiprocessing.cpu_count()

    manager = multiprocessing.Manager()
    return_dict = manager.dict()

    jobs = []
    for itSet in range(0, numSets):
        p = multiprocessing.Process(target=regGrowing,
                                    args=(area, numSamples, R_H, height, width,
                                          sz, preSeg, m, img_r, img_g, img_b,
                                          clsMap, numCls, return_dict, itSet))
        jobs.append(p)
        p.start()

    for proc in jobs:
        proc.join()

    outputPar = return_dict.values()

    outputPar = np.asarray(outputPar)

    # swapping axes, because parallel returns (numSets,...)
    ref_cls = np.moveaxis(outputPar, 0, 3)

    # averaging scores obtained for each set of seeds
    ref_M = (np.sum(ref_cls, axis=3)) / numSets

    # maximum likelihood across refined classes scores ref_M
    maxScores = np.amax(ref_M, axis=2)
    maxClasses = np.argmax(ref_M, axis=2)

    detMask = np.uint8(maxClasses + 1)

    finalMask = np.zeros((height, width), dtype=float)
    for itCls in range(0, numCls):
        np.putmask(finalMask, detMask == itCls + 1, clsList[itCls])

    finalMask = np.uint8(finalMask - 1)

    np.save('static/' + username + '/lastmask.npy',
            np.asarray(finalMask, dtype=float))
    # sio.savemat('intermediate.mat', mdict={'anns':anns,'ref_M': ref_M,'ref_cls':ref_cls,'finalMaskRGR':finalMask})
    # apply colormap
    _, alpha = cv.threshold(finalMask, 0, 255, cv.THRESH_BINARY)

    finalMask = cv.cvtColor(np.uint8(finalMask), cv.COLOR_GRAY2RGB)
    im_color = cv.LUT(finalMask, lut)

    b, g, r = cv.split(im_color)
    rgba = [b, g, r, alpha]
    im_color = cv.merge(rgba, 4)

    return im_color
Exemplo n.º 22
0
 def __call__(self, image, labels=None):
     image = cv2.LUT(image, table)
     if labels is None:
         return image
     else:
         return image, labels
Exemplo n.º 23
0
def _adjust_brightness_torchvision_uint8(img, factor):
    lut = np.arange(0, 256) * factor
    lut = np.clip(lut, 0, 255).astype(np.uint8)
    return cv2.LUT(img, lut)
Exemplo n.º 24
0
def gamma_trans(img, gamma):
    gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]
    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
    return cv2.LUT(img, gamma_table)
Exemplo n.º 25
0
    def adjust_gamma(gamma):
        invGamma = 1.0 / gamma
        table = np.array([((i / 255.0)**invGamma) * 255
                          for i in np.arange(0, 256)]).astype("uint8")

        return cv2.LUT(img, table)
Exemplo n.º 26
0
def gamma_trans(img, gamma):  # gamma函数处理
    gamma_table = [np.power(x / 255.0, gamma) * 255.0
                   for x in range(256)]  # 建立映射表
    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)  # 颜色值为整数
    return cv2.LUT(img, gamma_table)  # 图片颜色查表。另外可以根据光强(颜色)均匀化原则设计自适应算法。
Exemplo n.º 27
0
    # randomly erode, dilate or nothing
    # we could move it also after binarization
    kernel = np.ones((3, 3), np.uint8)
    a = random.choice([1, 2, 3])
    if a == 1:
        gaussiannoise = cv2.dilate(gaussiannoise, kernel, iterations=1)
    elif a == 2:
        gaussiannoise = cv2.erode(gaussiannoise, kernel, iterations=1)

    # add random gamma correction
    gamma = np.random.uniform(param_gamma_low, param_gamma_high)
    invGamma = 1.0 / gamma
    table = np.array([((i / 255.0)**invGamma) * 255
                      for i in np.arange(0, 256)]).astype("uint8")
    gammacorrected = cv2.LUT(np.uint8(gaussiannoise), table)

    # binarize image with Otsu
    otsu_th, binarized = cv2.threshold(gammacorrected, 0, 1,
                                       cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

    # Kanungo noise
    dist = cv2.distanceTransform(
        1 - binarized, cv.CV_DIST_L1,
        3)  # try cv2.DIST_L1 for newer versions of OpenCV
    dist2 = cv2.distanceTransform(
        binarized, cv.CV_DIST_L1,
        3)  # try cv2.DIST_L1 for newer versions of OpenCV
    P = (param_kanungo_alpha0 *
         np.exp(-param_kanungo_alpha * dist**2)) + param_kanungo_mu
    P2 = (param_kanungo_beta0 *
Exemplo n.º 28
0
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img1 = cv.imread('images/im03.png', cv.IMREAD_COLOR)
img = cv.cvtColor(img1, cv.COLOR_RGB2BGR)
f, axarr = plt.subplots(2, 2)
axarr[0, 0].imshow(img, cmap='gray')
axarr[0, 0].set_title("Original image")
x = np.arange(0, 256)
axarr[0, 1].plot(x)
y = np.arange(255, -1, -1)
axarr[1, 1].plot(y)
axarr[1, 0].imshow(cv.LUT(img, y), cmap='gray')
axarr[1, 0].set_title("Transformed image")
plt.show()
Exemplo n.º 29
0
    def adjust_gamma(image,
                     gamma,
                     gamma_break=None,
                     linear_part=True,
                     inverse=False,
                     max_val=255):
        if gamma == 1:
            return image

        # build a lookup table mapping the pixel values [0, 255] to
        # their adjusted gamma values
        invGamma = gamma if inverse else 1.0 / gamma
        gamma_break = gamma_break or 0

        if image.dtype == 'uint8' and gamma_break == 0:
            # apply gamma correction using the lookup table
            max_val = min(max_val, 255)
            table = np.array([((i / max_val)**invGamma) * max_val
                              for i in np.arange(0, max_val + 1)
                              ]).astype(image.dtype)
            adj_img = cv2.LUT(image, table)
        elif gamma_break == 0:
            adj_img = np.round(
                ((image / max_val)**invGamma) * max_val).astype(image.dtype)
        elif True:
            # from https://se.mathworks.com/help/vision/ref/gammacorrection.html
            b_p = gamma_break
            s_ls = 1 / (gamma / b_p**(1 / gamma - 1) - gamma * gamma_break +
                        gamma_break)
            f_s = gamma * s_ls / b_p**(1 / gamma - 1)
            c_o = f_s * b_p**(1 / gamma) - s_ls * b_p

            img = image.flatten() / max_val
            I = img <= (s_ls if inverse else 1) * b_p
            nI = np.logical_not(I)

            adj_img = np.zeros(image.shape).flatten()
            adj_img[I] = (img[I] / s_ls) if inverse else (img[I] * s_ls)
            adj_img[nI] = (((img[nI] + c_o) / f_s)**
                           gamma) if inverse else (f_s * img[nI]**(1 / gamma) -
                                                   c_o)
            adj_img = (adj_img * max_val).reshape(image.shape).astype(
                image.dtype)

        else:
            # from https://en.wikipedia.org/wiki/SRGB
            if 1:
                a = gamma_break
                K0 = a / (gamma - 1)
            else:
                K0 = gamma_break
                a = K0 * (gamma - 1)

            alpha = 1 + a
            th = alpha**gamma * (gamma - 1)**(gamma - 1) / a**(
                gamma - 1) / gamma**gamma

            lim = K0 if inverse else K0 / th
            img = image.flatten() / max_val
            I = img <= lim
            nI = np.logical_not(I)

            adj_img = np.zeros(image.shape).flatten()
            adj_img[I] = (img[I] / th) if inverse else (th * img[I])
            adj_img[nI] = (((img[nI] + a) / alpha)**gamma) if inverse else (
                alpha * img[nI]**(1 / gamma) - a)
            adj_img = (adj_img * max_val).reshape(image.shape).astype(
                image.dtype)
            # adj_img = np.round(adj_img * max_val).reshape(image.shape).astype(image.dtype)

        return adj_img
Exemplo n.º 30
0
    def __call__(self, img, events=None):

        if not self.display:
            return

        img = self.crop_outer_border(img, self.border)

        with Timer('Gamma correction'):
            if not self.gamma == 1.0:
                img = cv2.LUT(img, self.gamma_LUT)

        with Timer('Contrast/Brighntess correction'):
            if not (self.contrast == 1.0 and self.brightness == 0.0):
                cv2.convertScaleAbs(src=img,
                                    dst=img,
                                    alpha=self.contrast,
                                    beta=self.brightness)

        with Timer('Saturation correction'):
            img_is_color = (len(img.shape) == 3)
            if img_is_color and not self.saturation == 1.0:
                img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype("float32")
                (h, s, v) = cv2.split(img)
                s = s * self.saturation
                s = np.clip(s, 0, 255)
                img = cv2.merge([h, s, v])
                img = cv2.cvtColor(img.astype("uint8"), cv2.COLOR_HSV2BGR)

        if self.show_events:
            assert (events is not None)
            event_preview = make_event_preview(
                events,
                mode=self.event_display_mode,
                num_bins_to_show=self.num_bins_to_show)
            event_preview = self.crop_outer_border(event_preview, self.border)

        if self.show_events:
            img_is_color = (len(img.shape) == 3)
            preview_is_color = (len(event_preview.shape) == 3)

            if (preview_is_color and not img_is_color):
                img = np.dstack([img] * 3)
            elif (img_is_color and not preview_is_color):
                event_preview = np.dstack([event_preview] * 3)

            if self.show_reconstruction:
                img = np.hstack([event_preview, img])
            else:
                img = event_preview

        cv2.imshow(self.window_name, img)
        c = cv2.waitKey(self.wait_time)

        if c == ord('s'):
            now = datetime.now()
            path_to_screenshot = '/tmp/screenshot-{}.png'.format(
                now.strftime("%d-%m-%Y-%H-%M-%S"))
            cv2.imwrite(path_to_screenshot, img)
            print('Saving screenshot to: {}'.format(path_to_screenshot))
        elif c == ord('e'):
            self.show_events = not self.show_events
        elif c == ord('f'):
            self.show_reconstruction = not self.show_reconstruction