Exemplo n.º 1
0
def getthresholdedimg(im):
    imghsv = cv.CreateImage(cv.GetSize(im), 8, 3)
    # Convert image from RGB to HSV
    cv.CvtColor(im, imghsv, cv.CV_BGR2HSV)
    imgthreshold = cv.CreateImage(cv.GetSize(im), 8, 1)
    cv.InRangeS(imghsv, cv.Scalar(23, 100, 100), cv.Scalar(25, 255, 255),
                imgthreshold)  # catch the orange yellow blob
    return imgthreshold
Exemplo n.º 2
0
def earthmoverdistance(hist1, hist2, h_bins, s_bins):
    #Define number of rows
    numRows = h_bins * s_bins
    sig1 = np.array((numRows, 3), dtype=float)
    sig2 = np.array((numRows, 3), dtype=float)
    for h in range(h_bins):
        for s in range(s_bins):
            bin_val = cv2.QueryHistValue_2D(hist1, h, s)

            cv2.Set2D(sig1, h * s_bins + s, 0, cv2.Scalar(bin_val))
            cv2.Set2D(sig1, h * s_bins + s, 1, cv2.Scalar(h))
            cv2.Set2D(sig1, h * s_bins + s, 2, cv2.Scalar(s))

            bin_val = cv2.QueryHistValue_2D(hist2, h, s)
            cv2.Set2D(sig2, h * s_bins + s, 0, cv2.Scalar(bin_val))
            cv2.Set2D(sig2, h * s_bins + s, 1, cv2.Scalar(h))
            cv2.Set2D(sig2, h * s_bins + s, 2, cv2.Scalar(s))
    #This is the important line were the OpenCV EM algorithm is called
    return cv2.CalcEMD2(sig1, sig2, cv2.CV_DIST_L2)
Exemplo n.º 3
0
import numpy as np
import cv2

lower_color_bounds = cv2.Scalar(100, 0, 0)
upper_color_bounds = cv2.Scalar(225, 80, 80)

frame = cv2.imread('octo_first_layer.PNG', 1)

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
mask = cv2.inRange(frame, lower_color_bounds, upper_color_bounds)
mask_rgb = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
frame = frame & mask_rgb
cv2.imshow('Frame', frame)
cv2.waitKey(0)
Exemplo n.º 4
0
def main():
    inputFile, outputFile = (sys.argv[1], sys.argv[2])
    im = cv2.imread(inputFile)
    cv2.Scalar(200, 200, 200)
    wim = cv2.inRange(im, np.array([200, 200, 200]), np.array([255, 255, 255]))
    cv2.imwrite(filename=outputFile, img=wim)
Exemplo n.º 5
0
if __name__ == "__main__":
    orig = cv.LoadImage(
        r"C:\git\Python-Snippets\Image Recognition\images\D2C-Logins - RunDate 2019-10-03 - Part (22).image"
    )
    #Convert in black and white
    res = cv.CreateImage(cv.GetSize(orig), 8, 1)
    cv.CvtColor(orig, res, cv.CV_BGR2GRAY)

    #Operations on the image
    openCloseImage(res)
    dilateImage(res, 2)
    erodeImage(res, 2)
    smoothImage(res, 5)
    thresholdImage(res, 150, cv.CV_THRESH_BINARY_INV)

    #Get contours approximated
    contourLow = getContours(res, 3)

    #Draw them on an empty image
    final = cv.CreateImage(cv.GetSize(res), 8, 1)
    cv.Zero(final)
    cv.DrawContours(final, contourLow, cv.Scalar(255), cv.Scalar(255), 2,
                    cv.CV_FILLED)

    cv.ShowImage("orig", orig)
    cv.ShowImage("image", res)
    cv.SaveImage("modified.png", res)
    cv.ShowImage("contour", final)
    cv.SaveImage("contour.png", final)

    cv.WaitKey(0)
Exemplo n.º 6
0
import glob
import os
import cv2

if not os.path.exists('label'):
    os.mkdir('label')

white_low = cv2.Scalar(0,0,0)
white_high = cv2.Scalar(0,0,255)
yellow_low = cv2.Scalar(20,100,100)
yellow_high = cv2.Scalar(30,255,255)

path = "data\\*.jpg"
for file in glob.glob(path):
    raw = cv2.imread(file)
    hsv = cv2.cvtColor(raw, cv2.COLOR_BGR2HSV)
    white_mask = cv2.inRange(hsv, white_low, white_high)
    yellow_mask = cv2.inRange(hsv, yellow_low, yellow_high)
    mask = white_mask + yellow_mask
    
    filename = os.path.splittext(file)[0]
    cv2.imwrite("label\\"+filename+".png", 255*mask)