def getCommand(): print("getCommand running ...") cv.wait(3) global line_image global prev_left global prev_right # calculate left and right line image_bnw = cam.get_image('bnw',BNW_THRESHOLD) # image_bnw = cam.get_image('canny') line_list = find_all_lines(image_bnw) # in case no lines found use previous lines if (not line_list): print('No lines detected - using previous Lines!') line_list = [prev_left, prev_right] # get new lines - return format [[left offset, alpha][right offset, alpha]] lines_LR = find_lines_LR(line_list,prev_left,prev_right,DIV_ITER) # update lines and draw them in global line_image image_color = cam.get_image('color') # if current lines are detected use them ... # left line if(len(lines_LR[0]) == 2): prev_left = [float(i) for i in lines_LR[0]] draw_lines(image_color,prev_left) # ... or if no lines use prev ... # else: # lines_LR[0] = prev_left; # righ tline if(len(lines_LR[1]) == 2): prev_right = [float(i) for i in lines_LR[1]] draw_lines(image_color, prev_right) # ... or if no lines use prev ... # else: # lines_LR[1] = prev_right; # or write prev_left and prev_right into lines_LR # pref_left & prev_right beinhalten hier die Informationen mit denen # weitergearbeitet wird, also schreibe # write camera-image with drawed lines to global variable line_image = image_color # Annahme: Hier sind die Werte rho und theat print('lines_LR: LEFT: ' + str(lines_LR[0]) + ' RIGHT: ' + str(lines_LR[1])) vanishing_point = get_vp(lines_LR) print('getCommand returns: ' + str(vanishing_point)) return vanishing_point
def find_marker(self, image_msg): if not self.active: return now = rospy.Time.now() if now - self.last_stamp < self.publish_duration: return else: self.last_stamp = now try: self.currentImg = self.bridge.compressed_imgmsg_to_cv2( image_msg, "bgr8") except CvBridgeError as e: print e gray = cv2.cvtColor(currentImg, cv2.COLOR_BGR2GRAY) detection, corners = cv2.findCirclesGrid(gray, (7, 3)) copy = currentImg.copy() if detection: cv2.drawChessboardCorners(copy, (7, 3), corners, detection) twoone = [] for i in range(0, 21): point = [corners[i][0][0], corners[i][0][1]] twoone.append(point) twoone = np.array(twoone) self.originalmatrix() detection, rvec, tvec = self.gradient(twoone) distance(copy, tvec) cv2.imshow('detection', copy) cv2.wait(1)
def run(self): log_lib.debug("Starting ...") start_time = time.time() while not self.stop_event.is_set(): try: log_lib.debug( "Trying to pull data from Queue. Current Queue size {}". format(queue.qsize())) if queue.qsize() == 0: time.sleep(sleeping_time) continue frame_data = queue.get(block=True) log_lib.debug( "Pulled a frame of size of {} B from Queue. Current Queue size {}" .format(len(frame_data), queue.qsize())) frame = cv2.imdecode(np.fromstring(frame_data, dtype=np.uint8), -1) cv2.imshow('Window', frame) cv2.wait(1) #time.sleep(sleeping_time) except Exception as e: log_lib.fatal(str(e)) break try: cv2.destroyAllWindows() except: pass elapsed_time = time.time() - start_time log_lib.info("Completed in %s" % utils_lib.elapsed_time_string(elapsed_time))
import cv2 import numpy as np import time cap = cv2.VideoCapture(0) i=0 while(i==0): #i=1+1 ret,image = cap.read() gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray=cv2.medianBlur(gray,5) #output = image.copy() cv2.imshow("output", image) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT,1,20,80,60,20,20) #print(circles) if circles is not None: circles = np.int32(circles[0, :]) print(circles) if [80] in circles: continue for [x, y, r] in circles: cv2.circle(image, (x, y), r, (0, 255, 0), 1) cv2.imshow("output", image) k = cv2.waitKey(30) & 0xff if k == 27: break cv2.wait(1) cv2.destroyAllWindows()
def show_img(img, name='default'): cv2.imshow(name, img) cv2.wait()
import cv2 as cv img = cv.imread('Photos/user.jpg') cv.imshow('User', img) cv.wait()
import cv2 #reading the image from te same dir where the project is and at a same time changing it to grayscale. img = cv2.imread("cat.jpg",0) #showing the output with an output window name output and passing the img cv2.imshow("output",img) #use to wait till any interruot is given through key cv2.waitKey(0) #this statement will create a new image with format of png cv2.imwrite("qwerty.png",img) #crerate a black white inage and will chnge the rbg value from 127 to 255 in 1 and rest in 0 ret,bw = cv2.threshold(img,127,255,cv2.THRESH_BINARY) cv2.imshow("blackWhite",bw) cv2.wait(0) #destroy all the windows bedore exiting from the program cv2.destroyAllWindows()
for files in TraningFiles: file = os.listdir("TrainingData" + "/" + files) for Image in file: IMAGE = face_recognition.load_image_file( "TrainingData" + "/" + TraningFiles[TraningFiles.index(files)] + "/" + Image) try: image = cv2.imread( "TrainingData" + "/" + TraningFiles[TraningFiles.index(files)] + "/" + Image, 0) (top, right, bottom, left) = face_recognition.face_locations(IMAGE) cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2) cv2.imshow('Training Data', image) cv2.wait(500) TrainingData.append(face_recognition.face_encodings(IMAGE)[0]) labels.append(TraningFiles[TraningFiles.index(files)]) cv2.destroyAllWindows() except: print( "I wasn't able to locate any faces in at least one of the images. Check the image files: " + "TrainingData" + "/" + TraningFiles[TraningFiles.index(files)] + "/" + Image) trainedfile = open('TrainingData.pkl', 'wb') Labelfile = open('LabelData.pkl', 'wb') pickle.dump(TrainingData, trainedfile) pickle.dump(labels, Labelfile) else: trainedfile = open('TrainingData.pkl', 'rb') Labelfile = open('LabelData.pkl', 'rb')
thickness=1) cv.polylines(img2, [np.int32(res2)], isClosed=True, color=(0, 0, 255), thickness=1) cv.polylines(img3, [np.int32(res3)], isClosed=True, color=(0, 0, 255), thickness=1) cv.polylines(img4, [np.int32(res4)], isClosed=True, color=(0, 0, 255), thickness=1) cv.imshow("image", img0) cv.wait(0) cv.imshow("image", img1) cv.waitKey(0) cv.imshow("image", img2) cv.waitKey(0) cv.imshow("image", img3) cv.waitKey(0) cv.imshow("image", img4) cv.waitKey(0) img5 = np.zeros((640, 640, 3), np.uint8) img5.fill(255)