Exemplo n.º 1
0
def fremantle(age, male, cvd, hba1c, acr, hdl_mmol, seurope, aboriginal):
    """
    Calculate the risk for cardiovascular disease
    using the coefficients from the Fremantle Cohort

    Parameters
    ----------
    age : numeric
            Age of subject
    isMale : boolean or int
            Subject is male (True or False)
    cvd: boolean or int
            Previous history of CVD (True or False)
    hba1c : numeric
            Hba1c (%) of subject
    acr : numeric
            Urinary albumin : creatinine ratio in mg/mmol
    hdl : numeric
            High density lipid cholestrol in mmol/L
    seurope : bool or int
            Subject is Southern European (True or False)
    aboriginal : bool or int
            Subject is Indigenous Australian (True or False)
    """
    xFeat = np.array([
        clean_age(age), male, cvd,
        np.log(clean_hba1c(hba1c)),
        np.log(clean_acr(acr)),
        np.log(clean_hdl(hdl_mmol, meas="mmol")), seurope, aboriginal
    ])
    return cox_surv(xFeat, FREMANTLE_COEF, FREMANTLE_SM, FREMANTLE_CONST)
Exemplo n.º 2
0
def dcs(diabAge, isFemale, prevSmoke, curSmoke, hba1c, sbp,
        maori, easian, pacific, indoasian, other, tchdl,
        microalbumin, macroalbumin, diabDur, htn, target="CVD"):
    coefInfo = MI_INFO
    if target == "CVD":
        coefInfo = CVD_INFO
    xFeat = np.array([diabAge,
                      isFemale,
                      prevSmoke,
                      curSmoke,
                      hba1c,
                      sbp,
                      maori,
                      easian,
                      pacific,
                      indoasian,
                      other,
                      tchdl,
                      microalbumin,
                      macroalbumin,
                      diabDur,
                      htn,
                      sbp*htn])
    return cox_surv(xFeat, coefInfo["coef"],
                    coefInfo["s0"], coefInfo["const"])
Exemplo n.º 3
0
def frs_simple(female, age, bmi, sbp, htn, smk, diab):
    """
    10-year risk calculated using the Simple Non-Laboratory 
    Framingham Risk Score (FRS) Calculation.
    
    Parameters
    ----------
    female : boolean
    age : numeric
            Age of subject
    bmi : numeric
            BMI of subject
    sbp : numeric
            Systolic blood pressure of subject
    ht_treat : bool or int
            Treatment for hypertension (True or False)
    smk : bool or int
            Subject is smoker (True or False)
    diab : bool or int
            Subject has diabetes (True or False)
    """
    xFeat = np.array([np.log(clean_age(age)),
                      np.log(clean_bmi(bmi)),
                      np.log(clean_bp(sbp))*(1-htn),
                      np.log(clean_bp(sbp))*htn,
                      smk,
                      diab])
    genderInfo = NONLAB_MEN
    if female: 
        genderInfo = NONLAB_WOMEN
    return cox_surv(xFeat, genderInfo["coef"],
                    genderInfo["s0"], genderInfo["const"])
Exemplo n.º 4
0
def dmcx(age, egfr, tchdl, acr, smoker, diab_dur, female, sbp, dbp, hba1c,
         htn_med, bmi, insulin, aGlucose):
    """
    Calculate the risk for cardiovascular disease
    using the coefficients from the DMCX Cohort

    Parameters
    ----------
    age : numeric
            Age of subject
    """
    # do some preprocessing
    age = clean_age(age)
    egfr = clean_egfr(egfr)
    sbp = clean_bp(sbp)
    dbp = clean_bp(dbp)
    bmi = clean_bmi(bmi)
    hba1c = clean_hba1c(hba1c)
    tchdl = clean_tchdl(tchdl)

    xFeat = np.array([
        age, egfr >= 60 and egfr < 90, egfr >= 30 and egfr < 60, egfr < 30,
        tchdl,
        np.log(clean_acr(acr) + 1), smoker,
        clean_diab_dur(diab_dur), sbp, hba1c, htn_med, dbp, bmi, insulin,
        dbp**2, bmi**2, sbp**2, hba1c**2, age * tchdl, age * hba1c,
        age * smoker, aGlucose
    ])
    coefInfo = MALE_DCMX
    if female:
        coefInfo = FEMALE_DCMX
    return cox_surv(xFeat, coefInfo["coef"], coefInfo["sm"], coefInfo["const"])
Exemplo n.º 5
0
def recode(age,
           female,
           ethnicity,
           smoking,
           sbp,
           cvdHist,
           bpld,
           statin,
           anticoag,
           hba1c,
           tchol,
           hdl,
           creat,
           acr,
           target="CHF"):
    coefInfo = CHD_INFO
    if target == "MI":
        coefInfo = MI_INFO
    if target == "STROKE":
        coefInfo = STROKE_INFO
    """
    Calculate the survival value
    """
    xFeat = np.array([
        clean_age(age), female, ethnicity, smoking,
        clean_bp(sbp), cvdHist, bpld, statin, anticoag,
        clean_hba1c(hba1c),
        clean_tot_chol(tchol),
        clean_hdl(hdl), creat,
        clean_acr(acr)
    ])
    return cox_surv(xFeat, coefInfo["coef"], coefInfo["s0"], coefInfo["const"])
Exemplo n.º 6
0
def hkdr_chd(age, female, cur_smoker, diab_dur, egfr, acr, nonhdl_mmol):
    """
    Calculate the risk for coronary heart disease
    using the coefficients from the HKDR CHD Cohort

    Parameters
    ----------
    age : numeric
            Age of subject
    isFemale : boolean or int
            Subject is female (True or False)
    curSmoke: boolean or int
            Previous history of CVD (True or False)
    diabDur : numeric
            Nubmer of years of diabetes
    egfr : numeric
            Estimated Glomerular Filteration Rate
    acr : numeric
            Urinary albumin : creatinine ratio in mg/mmol
    nonHDL : numeric
            Non-HDL cholesterol (mmol/L)
    """
    xFeat = np.array([
        clean_age(age), female, cur_smoker,
        clean_diab_dur(diab_dur),
        np.log10(clean_egfr(egfr)),
        np.log10(1 + clean_acr(acr)),
        clean_nonhdl(nonhdl_mmol, meas="mmol")
    ])
    return cox_surv(xFeat, HKDR_CHD["coef"], HKDR_CHD["sm"], HKDR_CHD["const"],
                    HKDR_CHD["shrink"])
Exemplo n.º 7
0
def ndr(diab_age,
        diab_dur,
        tchdl,
        hba1c,
        sbp,
        bmi,
        male,
        smoker,
        microalbum,
        macroalbum,
        afib,
        cvd,
        risk=5):
    if risk not in [4, 5]:
        raise NotImplementedError("Does not support risk that is not 4 or 5")
    baseSurv = S0_4
    if risk == 5:
        baseSurv = S0_5
    xFeat = np.array([
        diab_age - 53.858,
        clean_diab_dur(diab_dur) - 7.7360,
        np.log(clean_tchdl(tchdl)) - 1.3948,
        np.log(clean_hba1c(hba1c)) - 1.9736,
        np.log(clean_bp(sbp)) - 4.9441,
        np.log(clean_bmi(bmi)) - 3.3718, male - 0.6005, smoker - 0.1778,
        microalbum - 0.1604, macroalbum - 0.0638, afib - 0.0319, cvd - 0.1525
    ])
    s = cox_surv(xFeat, BETA, baseSurv)
    return s
Exemplo n.º 8
0
def hkdr_stroke(age, hba1c, acr, chd):
    xFeat = np.array(
        [clean_age(age),
         clean_hba1c(hba1c),
         np.log10(clean_acr(acr)), chd])
    return cox_surv(xFeat, HKDR_STROKE["coef"], HKDR_STROKE["sm"],
                    HKDR_STROKE["const"])
Exemplo n.º 9
0
def hkdr_hf(female, age, bmi, hba1c, acr, hb, chdHist):
    """
    Calculate the risk for heart failure
    using the coefficients from the HKDR Cohort

    Parameters
    ----------
    age : numeric
            Age of subject
    bmi : numeric
            BMI of the subject (in kg/m^2)
    hba1c: numeric
            HBA1C (%)
    acr : numeric
            Urinary albumin : creatinine ratio in mg/mmol
    hb : numeric
            Blood Hemoglobin (g/dl)
    chdHist : boolean or int
            Subject had CHD (true or False)
    """
    baseSurv = HKDR_HF["male_sm"]
    if female:
        baseSurv = HKDR_HF["female_sm"]
    xFeat = np.array([
        clean_age(age),
        clean_bmi(bmi),
        clean_hba1c(hba1c),
        np.log10(1 + clean_acr(acr)),
        clean_hb(hb), chdHist
    ])
    return cox_surv(xFeat, HKDR_HF["coef"], baseSurv, HKDR_HF["const"],
                    HKDR_HF["shrink"])
Exemplo n.º 10
0
def pce(female, ac, age, tot_chol, hdl, sbp, smoker, htn, diab, risk=5):
    if risk not in [5, 10]:
        raise NotImplementedError("Does not support risk that is not 5 or 10")
    baseSurv = "s10"
    if risk == 5:
        baseSurv = "s5"
    # figure out what the betas are
    cohortInfo = WHITE_MALE
    if female and ac:
        cohortInfo = BLACK_FEMALE
    elif female:
        cohortInfo = WHITE_FEMALE
    elif ac:
        cohortInfo = BLACK_MALE
    age = clean_age(age)
    tot_chol = clean_tot_chol(tot_chol)
    hdl = clean_hdl(hdl)
    sbp = clean_bp(sbp)
    xFeat = np.array([
        np.log(age),
        np.log(age)**2,
        np.log(tot_chol),
        np.log(tot_chol) * np.log(age),
        np.log(hdl),
        np.log(hdl) * np.log(age),
        np.log(sbp) * (1 - htn),
        np.log(age) * np.log(sbp) * (1 - htn),
        np.log(sbp) * htn,
        np.log(age) * np.log(sbp) * htn, smoker, smoker * np.log(age), diab
    ])
    s = cox_surv(xFeat, cohortInfo["coef"], cohortInfo[baseSurv],
                 cohortInfo["const"])
    return s
Exemplo n.º 11
0
def dial(is_male,
         age,
         bmi,
         cur_smoke,
         sbp,
         non_hdl,
         hba1c,
         egfr,
         microalbumin,
         macroalbumin,
         diab_dur,
         cvd_hist,
         insulin,
         hz_treat=0,
         high_risk_county=False):
    # fix the age to be within 34-94
    age = np.clip(clean_age(age), 34, 94)
    diab_dur = int(round(clean_diab_dur(diab_dur)))
    bmi = clean_bmi(bmi)
    sbp = clean_bp(sbp)
    non_hdl = clean_nonhdl(non_hdl, meas="mmol")
    egfr = clean_egfr(egfr)
    hba1c = clean_hba1c(hba1c, meas="mmol")
    xFeat = np.array([
        is_male, age * is_male, bmi - 30, bmi**2 - 30**2, cur_smoke,
        age * cur_smoke, sbp - 140, sbp**2 - 140**2, non_hdl - 3.8,
        non_hdl**2 - 3.8**2, hba1c - 50, hba1c**2 - 50**2, egfr - 80,
        egfr**2 - 80**2, microalbumin, macroalbumin, diab_dur, cvd_hist,
        age * cvd_hist, insulin, age * insulin, hz_treat, high_risk_county
    ])
    # look-up the age-specific value
    s0 = AGE_S0[age]
    return cox_surv(xFeat, DIAL_COEF, s0)
Exemplo n.º 12
0
def advance(diab_age, female, diab_dur, pp, retin, afib, hba1c, acr, non_hdl,
            htn_treat):
    # add ability to ensure specific values are not negative
    xFeat = np.array([
        diab_age, female,
        clean_diab_dur(diab_dur),
        clean_pp(pp), retin, afib,
        clean_hba1c(hba1c),
        np.log(clean_acr(acr)),
        clean_nonhdl(non_hdl), htn_treat
    ])
    s = cox_surv(xFeat, BETA, S_0, CONST)
    return s
Exemplo n.º 13
0
def frs_primary(female, age, tot_chol, hdl, sbp, htn, smk, diab):
    """
    """
    xFeat = np.array([np.log(clean_age(age)),
                      np.log(clean_tot_chol(tot_chol)),
                      np.log(clean_hdl(hdl)),
                      np.log(clean_bp(sbp))*(1-htn),
                      np.log(clean_bp(sbp))*htn,
                      smk,
                      diab])
    genderInfo = LAB_MEN
    if female: 
        genderInfo = LAB_WOMEN
    return cox_surv(xFeat, genderInfo["coef"],
                    genderInfo["s0"], genderInfo["const"])
Exemplo n.º 14
0
def aric(age, male, cauc, tc, hdl, sbp, htn, smoke):
    # set the coeff based on male or female
    genderInfo = FEMALE_INFO
    if male:
        genderInfo = MALE_INFO
    age = clean_age(age)
    tc = clean_tot_chol(tc)
    hdl = clean_hdl(hdl)
    xFeat = np.array([
        age, age**2, cauc, tc >= 200 and tc <= 279, tc >= 280, hdl < 45,
        hdl >= 45 and hdl <= 49,
        clean_bp(sbp), htn, smoke
    ])
    return cox_surv(xFeat, genderInfo["coef"], genderInfo["sm"],
                    genderInfo["xBetaMed"])