Exemplo n.º 1
0
def test_matrix_sq():
    """ Matrix Form of Minimize(square(v0)) """

    v0 = Variable(name = 'v0')
    v1 = Variable(name = 'v1')

    p0 = Parameter(name = 'p0')
    p1 = Parameter(name = 'p1')

    obj = square(v0)
    con = []

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True)

    assert(c.c == [0, 0, 1])
    assert(c.A is None)
    assert(c.b is None)

    assert_G =  {
                    'row':[0, 1, 2],
                    'col':[2, 2, 0],
                    'val':[Constant(-1.0), Constant(-1.0), Constant(2.0)]
                }


    assert_h = [Constant(1.0), Constant(-1.0), Constant(0.0)]
    assert_G = COO_to_CS(assert_G, (len(assert_h), len(c.c)), 'col')

    assert(c.G == assert_G)
    assert(all([c.h[n].value == t.value for n, t in enumerate(assert_h)]))

    assert(c.dims == {'q': [3], 'l': 0})

    reset_symbols()
Exemplo n.º 2
0
def test_relax_sq2norm_constr():
    """ Relaxed Form of Minimize(square(norm(v0))) with v0 >= p0"""

    v0 = Variable(name = 'v0')
    v1 = Variable(name = 'v1')

    p0 = Parameter(name = 'p0')
    p1 = Parameter(name = 'p1')

    obj = square(norm(v0))
    con = [v0 >= p0]  # should become -v0 + p0 <= 0

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True, only='relax')

    assert( type(c.constraints[-1]) is le)
    assert( type(c.constraints[-1].expr) is sums.sum)
    assert( type(c.constraints[-1].expr.args[0]) is muls.smul)
    assert( type(c.constraints[-1].expr.args[1]) is muls.smul)
    assert( c.objective is not obj   )
    assert( 'sym0' == c.objective.name )

    string_equals = [
        """((-1.0 * sym1) + (1.0 * norm2(v0))) <= 0""",
        """((-1.0 * sym0) + (1.0 * square(sym1))) <= 0""",
        """((-1.0 * v0) + (p0 * 1.0)) <= 0""",
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n],'==',string,'?')
        assert(str(c.constraints[n]) == string)
        print('SUCCESS!')

    reset_symbols()
Exemplo n.º 3
0
def test_relax_sq():
    """ Relaxed Form of Minimize(square(v0)) """

    v0 = Variable(name = 'v0')
    v1 = Variable(name = 'v1')

    p0 = Parameter(name = 'p0')
    p1 = Parameter(name = 'p1')

    obj = square(v0)
    con = []

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True, only='relax')

    assert( len(c.constraints) == 1 )
    assert( c.objective is not obj   )
    assert( 'sym0' == c.objective.name )

    assert(type(c.constraints[0]) is le)

    assert(c.constraints[0].expr.args[0].curvature == 0)
    assert(c.constraints[0].expr.args[1].curvature == +1)
    assert(c.constraints[0].expr.args[1].symbol_groups()[0][0].value == 1.0)
    assert(c.constraints[0].expr.args[1].symbol_groups()[2][0].name == 'square')

    reset_symbols()
Exemplo n.º 4
0
def test_smith_sq():
    """ Smith Form of Minimize(square(v0)) """

    v0 = Variable(name='v0')
    v1 = Variable(name='v1')

    p0 = Parameter(name='p0')
    p1 = Parameter(name='p1')

    obj = square(v0)
    con = []

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True, only='smith')

    assert (len(c.constraints) == 1)
    assert (c.objective is not obj)
    assert ('sym0' == c.objective.name)

    assert (hasattr(c.constraints[0].expr.args[0], 'name'))
    assert (c.constraints[0].expr.args[0].name == 'sym0')

    assert (hasattr(c.constraints[0].expr.args[1], 'args'))
    assert (hasattr(c.constraints[0].expr.args[1].args[0], 'value'))
    assert (c.constraints[0].expr.args[1].args[0].value == -1.0)

    assert (hasattr(c.constraints[0].expr.args[1].args[1], 'name'))
    assert (c.constraints[0].expr.args[1].args[1].name == 'square')

    reset_symbols()
Exemplo n.º 5
0
def test_relax_sq2norm():
    """ Relaxed Form of Minimize(square(norm(v0))) """

    v0 = Variable(name = 'v0')
    v1 = Variable(name = 'v1')

    p0 = Parameter(name = 'p0')
    p1 = Parameter(name = 'p1')

    obj = square(norm(v0))
    con = []

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True, only='relax')

    assert( c.objective is not obj   )
    assert( 'sym0' == c.objective.name )

    # Let up on the testing rigor a bit, now that we checked core fundamentals

    string_equals = [
        """((-1.0 * sym1) + (1.0 * norm2(v0))) <= 0""",
        """((-1.0 * sym0) + (1.0 * square(sym1))) <= 0""",
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n],'==',string,'?')
        assert(str(c.constraints[n]) == string)
        print('SUCCESS!')

    reset_symbols()
Exemplo n.º 6
0
def test_matrix_sq2norm_sqcon():
    """ Relaxed Form : Minimize(square(norm(v0))) with v0 >= square(v1) """

    v0 = Variable(name = 'v0')
    v1 = Variable(name = 'v1')

    p0 = Parameter(name = 'p0')
    p1 = Parameter(name = 'p1')

    obj = square(norm(v0 + v1))
    con = [v0 >= square(v1)]  # should become -v0 + square(v1) <= 0

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True)

    sym3 = [v for vn, v in c.vars.items() if vn == 'sym3'][0]

    assert_A = {'row': [0, 0, 0],
         'col': [0, 1, 4],
         'val': [Constant(-1.0), Constant(-1.0), Constant(1.0)]}

    assert_b = [Constant(0.0)]
    #assert_G = {'row': [0, 0, 1, 2, 3, 4, 5, 6, 7, 8],
    #     'col': [0, 5, 3, 4, 2, 2, 3, 5, 5, 1],
    #     'val': [Constant(-1.0), Constant(0.0), Constant(-1.0), Constant(1.0),
    #             Constant(-1.0), Constant(-1.0), Constant(2.0), Constant(-1.0),
    #             Constant(-1.0), Constant(2.0)]}

    assert_G = {'row': [0, 0, 1, 2, 3, 4, 5, 6, 7, 8],
         'col': [0, 5, 3, 4, 2, 2, 3, 5, 5, 1],
         'val': [Constant(-1.0), Constant(1.0), Constant(-1.0), Constant(1.0),
                 Constant(-1.0), Constant(-1.0), Constant(2.0), Constant(-1.0),
                 Constant(-1.0), Constant(2.0)]}

    assert_h = [ (-1.0 * sym3), Constant(0.0), Constant(0.0), Constant(1.0),
                Constant(-1.0), Constant(0.0), Constant(1.0),
                Constant(-1.0), Constant(0.0)]

    assert_h = [Constant(0.0), Constant(0.0), Constant(0.0), Constant(1.0),
                Constant(-1.0), Constant(0.0), Constant(1.0), Constant(-1.0),
                Constant(0.0)]

    assert_dims = {'q': [2, 3, 3], 'l': 1}

    assert_A = COO_to_CS(assert_A, (len(assert_b), len(c.c)), 'col')
    assert_G = COO_to_CS(assert_G, (len(assert_h), len(c.c)), 'col')

    assert_c = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

    assert(c.c == assert_c)
    assert(c.A == assert_A)
    assert(c.b == assert_b)

    assert(c.G == assert_G)
    assert(all([c.h[n].value == t.value for n, t in enumerate(assert_h)]))

    assert(c.dims == assert_dims)

    reset_symbols()
Exemplo n.º 7
0
def test_constraints():

    v0 = Variable(name='v0')
    v1 = Variable(name='v1')

    p0 = Parameter(name='p0')
    p1 = Parameter(name='p1')

    c = (v0 == 0)

    print(c)
    assert (type(c) == eq)
    assert (c.expr.args[0] is v0)

    c = (v0 <= 0)

    print(c)
    assert (type(c) == le)
    assert (c.expr.args[0] is v0)

    c = (v0 >= 0)

    print(c)
    assert (type(c) == le)
    assert (c.expr.args[0].args[0].value == -1)
    assert (c.expr.args[0].args[1] is v0)

    c = (v0 >= p0)

    print(c)
    assert (type(c) == le)
    assert (c.expr.args[0].args[0].value == -1)
    assert (c.expr.args[0].args[1] is v0)
    assert (c.expr.args[1].args[0] is p0)

    # TODO: ADD TESTS FOR ATOMS AND FUNCTIONS IN CONSTRAINTS!

    # ATOMS in Constraints

    c = (v1 + v0 == p0)

    print(c)
    assert (type(c) == eq)
    assert (str(c) == '(p0 + (-1.0 * v1) + (-1.0 * v0)) == 0')

    # FUNCTIONS in Constraints

    c = (norm(v1) <= v0)

    print(c)
    assert (type(c) == le)
    assert (c.expr.nterms == 2)
    assert (c.expr.args[1].args[1] is v0)

    reset_symbols()
Exemplo n.º 8
0
def test_square_graph():

    v0 = Variable(name='v0')
    s0 = Symbol(name='s0')

    expr = square(v0)

    constr = (expr <= s0)  # effectively in relaxed smith form

    print('Graph form of', end='')
    print(constr)
    constr = constr.graph_form()
    print('-->', constr)
    print()

    n = max(v0.shape[0], v0.shape[1])
    assert (constr.dims == n + 2)
    assert (type(constr) is SecondOrderConeConstraint)
    assert (all([type(c) is le for c in constr.constraints]))

    c = constr  # keeps below names same as other tests

    string_equals = [
        """(-1.0 + (-1.0 * s0)) <= 0""", """(1.0 + (-1.0 * s0)) <= 0""",
        """((2.0 * v0)) <= 0"""
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n], '==', string, '?')
        assert (str(c.constraints[n]) == str(string))
        print('SUCCESS!')

    reset_symbols()
Exemplo n.º 9
0
def test_relax_least_squares_constr():
    """ Relaxed Form : Minimize(square(norm(F*x - g))) with x >= p0 """

    x = Variable ((3,1),name='x')
    F = Parameter((3,3),name='F')
    g = Parameter((3,1),name='g')

    objective = square(norm( F*x - g ))

    objective = Minimize(objective)
    problem   = Problem(objective, [x >= 0])

    c = Canonicalize(problem, verbose=True, only='relax')

    string_equals = [
        """(sym2 + (-1.0 * matmul(F, x))) == 0""",
        """(sym3 + (-1.0 * sym2) + (g * 1.0)) == 0""",
        """((-1.0 * sym1) + (1.0 * norm2(sym3))) <= 0""",
        """((-1.0 * sym0) + (1.0 * square(sym1))) <= 0""",
        """((-1.0 * x)) <= 0""",
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n],' ???? ',string, end=' ')
        assert(str(c.constraints[n]) == string)
        print('... SUCCESS!')

    reset_symbols()
Exemplo n.º 10
0
def test_elementwisesymbol_into_function():
    """ Test a shaped symbol input to a scalar function and
        the elementwise output """

    x = Variable((3, 1), name='x')

    expr = square(x)

    print(expr)

    constr = (expr <= 0)

    print(constr)

    expand = constr.expand()

    print(expand)

    assert (type(constr.expr) is sums.sum)
    assert (type(constr.expr.args[0]) is Vector)
    assert (len(constr.expr.args[0].args) == 3)
    assert (len(expand) == 3)
    assert (all([type(a) is le for a in expand]))

    reset_symbols()
Exemplo n.º 11
0
def test_norm_inf():

    x = Variable((3, 1), name='x')

    objective = norm(x, kind='inf')  # returns max(abs(x))

    objective = Minimize(objective)
    problem = Problem(objective, [])

    c = Canonicalize(problem, verbose=True, only='smith')

    assert (len(c.constraints) == 4)

    string_equals = [
        """(sym1[0][0] + (-1.0 * abs(x[0][0]))) == 0""",
        """(sym1[1][0] + (-1.0 * abs(x[1][0]))) == 0""",
        """(sym1[2][0] + (-1.0 * abs(x[2][0]))) == 0""",
        """(sym0 + (-1.0 * max(sym1))) == 0""",
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n], ' ???? ', string, end=' ')
        assert (str(c.constraints[n]) == string)
        print('... SUCCESS!')

    reset_symbols()
Exemplo n.º 12
0
def test_matvec():
    """ Test Matrix * Vector product """

    a = Parameter((3, 3), name='a')
    x = Variable((3, 1), name='x')

    m = a * x

    print(m, 'with shapes', a.shape, 'x', x.shape)

    expanded = m.expand()

    print_matrix(expanded)

    assert (list_shape(expanded) == m.shape)

    # Holds all the indices we assert must be in each ELEMENT of each atom
    ind = [[
        [[(0, 0), (0, 0)], [(0, 1), (1, 0)], [(0, 2), (2, 0)]],
    ], [
        [[(1, 0), (0, 0)], [(1, 1), (1, 0)], [(1, 2), (2, 0)]],
    ], [
        [[(2, 0), (0, 0)], [(2, 1), (1, 0)], [(2, 2), (2, 0)]],
    ]]

    for n, row in enumerate(ind):
        for m, col in enumerate(row):
            for s, sumarg in enumerate(col):
                for a, mularg_shape in enumerate(sumarg):
                    assert (
                        expanded[n][m].args[s].args[a].index == mularg_shape)

    reset_symbols()
Exemplo n.º 13
0
def test_sqrt_graph():

    v0 = Variable(name='v0')
    s0 = Symbol(name='s0')

    expr = sqrt(v0)  # concave

    constr = (expr >= s0)  # effectively in relaxed smith form

    print('Graph form of', end=' ')
    print(constr)
    constr = constr.graph_form()
    print('-->', constr)

    assert (constr.dims == 3)
    assert (type(constr) is SecondOrderConeConstraint)
    assert (all([type(c) is le for c in constr.constraints]))

    c = constr

    string_equals = [
        """(-1.0 + (-1.0 * v0)) <= 0""",
        """(1.0 + (-1.0 * v0)) <= 0""",
        """((2.0 * s0)) <= 0""",
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n], '==', string, '?')
        assert (str(c.constraints[n]) == str(string))
        print('SUCCESS!')

    reset_symbols()
Exemplo n.º 14
0
def test_quad_over_lin_x1_graph():

    v0 = Variable(name='v0')
    s0 = Symbol(name='s0')

    x = v0
    expr = quad_over_lin([1], x)

    constr = (expr <= s0)  # effectively in relaxed smith form

    print('Graph form of', end='')
    print(constr)
    constr = constr.graph_form()
    print('-->', constr)
    print()

    assert (constr.dims == 3)
    assert (type(constr) is SecondOrderConeConstraint)
    assert (all([type(c) is le for c in constr.constraints]))

    c = constr  # keeps below names same as other tests

    string_equals = [
        """((-1.0 * v0) + (-1.0 * s0)) <= 0""",
        """((1.0 * v0) + (-1.0 * s0)) <= 0""",
        """(2.0) <= 0"""  # although this constraint is weird, it is required
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n], '==', string, '?')
        assert (str(c.constraints[n]) == str(string))
        print('SUCCESS!')

    reset_symbols()
Exemplo n.º 15
0
def test_symbol_curvature():

    v = Variable(name='v')
    assert (v.curvature == 0)

    p = Parameter(name='p')
    assert (p.curvature == 0)

    reset_symbols()
Exemplo n.º 16
0
def test_matrix_sq2norm_constr():
    """ Matrix Form of Minimize(square(norm(v0))) with v0 >= p0"""

    v0 = Variable(name = 'v0')
    v1 = Variable(name = 'v1')

    p0 = Parameter(name = 'p0')
    p1 = Parameter(name = 'p1')

    obj = square(norm(v0))
    con = [v0 >= p0]  # should become -v0 + p0 <= 0

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True)


    assert_c = [0.0, 0.0, 1.0, 0.0]

    assert_A = COO_to_CS({'row':[],'col':[],'val':[]}, (0,4), 'col')

    assert_G =  {'row': [0, 1, 2, 3, 4, 5], 'col': [0, 3, 0, 2, 2, 3],
                'val': [Constant(-1.0), Constant(-1.0), Constant(1.0),
                        Constant(-1.0), Constant(-1.0), Constant(2.0)]}

    assert_h = [(-1.0 * p0), Constant(0.0), Constant(0.0),
                Constant(1.0), Constant(-1.0), Constant(0.0)]

    assert_G = COO_to_CS(assert_G, (len(assert_h), len(c.c)), 'col')

    assert(c.c == assert_c)
    assert(c.A is None)
    assert(c.b is None)

    assert(c.G == assert_G)
    assert(all([c.h[n].value == t.value for n, t in enumerate(assert_h)]))

    assert(c.dims == {'q': [2, 3], 'l': 1})

    reset_symbols()
Exemplo n.º 17
0
def test_mul_redirect():
    """ Test that mul redirects properly to matmul """

    a = Parameter((10, 1), name='a')
    b = Variable((1, 10), name='b')

    m = a * b

    assert (type(m) is matmul)
    assert (m.args[0] is a)
    assert (m.args[1] is b)

    reset_symbols()
Exemplo n.º 18
0
def test_live_symbols():

    v = Variable((10, ), name='v')

    assert (v.shape == (10, 1))
    assert (v.name == 'v')

    assert ('v' in symbols.keys())

    reset_symbols()

    assert ('v' not in symbols.keys())

    v = Variable((10, ))

    assert (v.shape == (10, 1))
    assert (v.name == 'sym0')

    assert ('sym0' in symbols.keys())

    reset_symbols()

    assert ('sym0' not in symbols.keys())
Exemplo n.º 19
0
def test_quad_over_lin_comp_graph():

    v0 = Variable(name='v0')
    v1 = Variable(name='v1')
    s0 = Symbol(name='s0')

    x = [(3 - v0), (1 + v1)]
    expr = quad_over_lin(x, 1)

    constr = (expr <= s0)  # effectively in relaxed smith form

    print('Graph form of', end='')
    print(constr)
    constr = constr.graph_form()
    print('-->', constr)
    print()

    n = len(x)
    assert (constr.dims == n + 2)
    assert (type(constr) is SecondOrderConeConstraint)
    assert (all([type(c) is le for c in constr.constraints]))

    c = constr  # keeps below names same as other tests

    string_equals = [
        """(-1.0 + (-1.0 * s0)) <= 0""",
        """(1.0 + (-1.0 * s0)) <= 0""",
        """(6.0 + (-2.0 * v0)) <= 0""",
        """(2.0 + (2.0 * v1)) <= 0""",
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n], '==', string, '?')
        assert (str(c.constraints[n]) == str(string))
        print('SUCCESS!')

    reset_symbols()
Exemplo n.º 20
0
def test_smith_sq2norm_sqcon():
    """ Smith Form : Minimize(square(norm(v0))) with v0 >= square(v1) """

    v0 = Variable(name='v0')
    v1 = Variable(name='v1')

    p0 = Parameter(name='p0')
    p1 = Parameter(name='p1')

    obj = square(norm(v0 + v1))
    con = [v0 >= square(v1)]  # should become -v0 + square(v1) <= 0

    p = Problem(Minimize(obj), con)
    c = Canonicalize(p, verbose=True, only='smith')

    assert (type(c.constraints[-1]) is le)
    assert (type(c.constraints[-1].expr) is sums.sum)
    assert (type(c.constraints[-1].expr.args[0]) is muls.smul)
    assert (type(c.constraints[-1].expr.args[1]) is muls.smul)
    assert (c.objective is not obj)
    assert ('sym0' == c.objective.name)

    string_equals = [
        """(sym2 + (-1.0 * v0) + (-1.0 * v1)) == 0""",
        """(sym1 + (-1.0 * norm2(sym2))) == 0""",
        """(sym0 + (-1.0 * square(sym1))) == 0""",
        """(sym3 + (-1.0 * square(v1))) == 0""",
        """((-1.0 * v0) + (1.0 * sym3)) <= 0""",
    ]

    for n, string in enumerate(string_equals):
        print(c.constraints[n], ' ???? ', string, end=' ')
        assert (str(c.constraints[n]) == string)
        print('... SUCCESS!')

    reset_symbols()
Exemplo n.º 21
0
def test_matrix_least_squares_constr():
    """ Minimize(square(norm(F*x - g))) with x >= p0 """

    x = Variable ((3,1),name='x')
    F = Parameter((3,3),name='F')
    g = Parameter((3,1),name='g')

    objective = square(norm( F*x - g ))

    objective = Minimize(objective)
    problem   = Problem(objective, [x >= 1])

    c = Canonicalize(problem, verbose=True)

    # Test for errors, not asserts, and for solution outcome (via ecos_solution)

    reset_symbols()
Exemplo n.º 22
0
def check_curvy_function(function, asserted_curvature):
    print('Testing Curvature of', function.name)

    v = Variable(name='v')

    e = function(v)

    if asserted_curvature > 0:
        assert (e.curvature > 0)
    else:
        assert (e.curvature < 0)

    e = -1 * function(v)

    if asserted_curvature > 0:
        assert (e.curvature < 0)
    else:
        assert (e.curvature > 0)

    reset_symbols()
Exemplo n.º 23
0
def test_matmul_constraint():
    """ Test that constraints with matmul are expanded elementwise in canon """

    p = Parameter((3, 1), name='p')
    a = Parameter((3, 3), name='a')
    x = Variable((3, 1), name='x')

    expr = a * x

    print('expr', expr)
    constr = (expr <= p)

    print('constr', constr)
    constr = constr.expand()
    print('-->', constr)
    print()

    assert (len(constr) == 3)
    assert (all([type(a) is le for a in constr]))

    reset_symbols()
Exemplo n.º 24
0
def test_norm_graph():

    v0 = Variable(name='v0')
    s0 = Symbol(name='s0')

    expr = norm(v0)

    constr = (expr <= s0)  # effectively in relaxed smith form

    print('Graph form of', end='')
    print(constr)
    constr = constr.graph_form()
    print('-->', constr)
    print()

    n = max(v0.shape[0], v0.shape[1])
    assert (constr.dims == n + 1)
    assert (type(constr) is SecondOrderConeConstraint)
    assert (all([type(c) is le for c in constr.constraints]))
    assert (constr.constraints[1].expr.args[0] is v0)
    assert (constr.constraints[0].expr.args[0].args[1] is s0)

    reset_symbols()
Exemplo n.º 25
0
def test_min_graph():

    v0 = Variable((3, 1), name='v0')
    s0 = Symbol(name='s0')

    expr = minimum(v0)  # concave

    constr = (expr >= s0)  # effectively in relaxed smith form

    print('Graph form of', end=' ')
    print(constr)
    constr = constr.graph_form()
    print('-->', constr)
    print()
    print('Expanded:')
    constrs = constr.expand()
    for con in constrs:
        print('-->', con)
    print()

    assert (constr.dims == 1)
    assert (type(constr) is SecondOrderConeConstraint)
    assert (all([type(c) is le for c in constr.constraints]))

    string_equals = [
        ["""((1.0 * v0[0][0]) + (-1.0 * s0)) <= 0"""],
        ["""((1.0 * v0[1][0]) + (-1.0 * s0)) <= 0"""],
        ["""((1.0 * v0[2][0]) + (-1.0 * s0)) <= 0"""],
    ]

    for i, c in enumerate(constrs):
        for n, string in enumerate(string_equals[i]):
            print(c.constraints[n], '==', string, '?')
            assert (str(c.constraints[n]) == str(string))
            print('SUCCESS!')

    reset_symbols()
Exemplo n.º 26
0
def test_elementwiselist_into_function():
    """ Test a list input to a scalar function and the elementwise output """

    x = Variable(name='x')
    y = Variable(name='y')
    z = Variable(name='z')
    a = Variable(name='a')
    b = Variable(name='b')
    c = Variable(name='c')

    expr = square([x, y, z, a, b, c])

    print(expr)

    constr = (expr <= 0)

    print(constr)

    assert (type(constr.expr) is sums.sum)
    assert (type(constr.expr.args[0]) is Vector)
    assert (len(constr.expr.args[0].args) == 6)

    reset_symbols()
Exemplo n.º 27
0
def test_shape():

    v = Variable(name='v')

    assert (v.shape == (1, 1))
    assert (v.name == 'v')

    v.clean()

    v = Variable((10, ), name='v')

    assert (v.shape == (10, 1))
    assert (v.name == 'v')

    v.clean()

    v = Variable((10, 10), name='v')

    assert (v.shape == (10, 10))
    assert (v.name == 'v')

    v.clean()
Exemplo n.º 28
0
def test_summation():

    v0 = Variable(name='v0')
    v1 = Variable(name='v1')

    p0 = Parameter(name='p0')
    p1 = Parameter(name='p1')

    s = v0

    print(s)
    assert (type(s) is Variable)
    assert (s is v0)

    s = v0 + 0

    print(s)
    assert (type(s) is sums.sum)
    assert (s.args[0] is v0)
    assert (s.nterms == 1)

    s = v0 + v1

    print(s)
    assert (s.nterms == 2)
    assert (type(s) is sums.sum)
    assert (s.vars == [v0, v1])

    assert (s.coeffs['v0'].value == +1)
    assert (s.coeffs['v1'].value == +1)

    s = v0 + v1 + 1

    print(s)
    assert (s.nterms == 3)
    assert (type(s) is sums.sum)
    assert (s.vars == [v0, v1, None])
    assert (s.coeffs['v0'].value == +1)
    assert (s.coeffs['v1'].value == +1)
    assert (s.offset[0].value == 1)

    s = v0 + (-v1 + (1 + p1))

    print(s)
    assert (s.nterms == 4)
    assert (type(s) is sums.sum)
    assert (s.vars == [v0, v1, None, None])
    assert (s.coeffs['v0'].value == +1)
    assert (s.coeffs['v1'].value == -1)
    assert ((s.offset[0]).value == 1)
    assert ((s.offset[1]) == p1)

    s = 3 * v0 + 2 * v1 + 4

    print(s)
    assert (s.nterms == 3)
    assert (type(s) is sums.sum)
    assert (s.vars == [v0, v1, None])

    assert (s.coeffs['v0'].value == 3)
    assert (s.coeffs['v1'].value == 2)
    assert (s.offset[0].value == 4)

    s = 3 * (v0 + 2 * v1 + 4)

    print(s)
    assert (s.nterms == 3)
    assert (type(s) is sums.sum)
    assert (s.vars == [v0, v1, None])
    assert (s.coeffs['v0'].value == 3)
    assert (s.coeffs['v1'].value == 6)
    assert (s.offset[0].value == 12)

    s = p0 * (v0 + p1 * v1 + 4)

    print(s)
    assert (s.nterms == 3)
    assert (type(s) is sums.sum)
    assert (s.vars == [v0, v1, None])
    assert (s.coeffs['v0'] == p0)
    assert (s.coeffs['v1'].args[0] == p0)
    assert (s.coeffs['v1'].args[1] == p1)
    assert ((s.offset[0]).args[0].value == 4.0)
    assert ((s.offset[0]).args[1] == p0)

    reset_symbols()
Exemplo n.º 29
0
def test_scalarmul():

    s0 = Symbol(name='s0')

    v0 = Variable(name='v0')
    v1 = Variable(name='v1')

    p0 = Parameter(name='p0')
    p1 = Parameter(name='p1')

    m = 1 * v0

    if debug:
        print(m)

    assert (m == v0)

    m = 2 * v0

    if debug:
        print(m)

    assert (m.coefficient_of(v0).value == 2)

    m = 3 * (2 * v0)

    if debug:
        print(m)

    assert (m.coefficient_of(v0).value == 6)

    m = p0 * (2 * v0)

    if debug:
        print(m)

    assert (type(m.coefficient_of(v0)) == muls.smul)
    assert (p0 in m.coefficient_of(v0).args)
    assert (2.0 in [
        arg.value for arg in m.coefficient_of(v0).args
        if hasattr(arg, 'value')
    ])

    m = (-1 * s0)

    if debug:
        print(m)

    assert (hasattr(m.args[0], 'value'))
    assert (m.args[0].value == -1)
    assert (m.args[1] is s0)

    m = 3 * (2 * (4 * v0))

    if debug:
        print(m)

    assert (m.coefficient_of(v0).value == 24)

    m = 3 * (2 * (4 * v0 + 1 * v1))

    if debug:
        print(m)

    assert (m.coefficient_of(v0).value == 24)
    assert (m.coefficient_of(v1).value == 6)

    m = 2 * (3 * (p0 + p1 * v1) + 3 * (2 * p0 + 3 * v0))

    v0_coeff = m.coefficient_of(v0)
    v1_coeff = m.coefficient_of(v1)

    if debug:
        print(m)

    assert (m.nterms == 4)
    assert (type(v0_coeff) == Constant)
    assert (type(v1_coeff) == muls.smul)
    assert (v0_coeff.value == 18)
    assert (p1 in v1_coeff.args)
    assert (6.0
            in [arg.value for arg in v1_coeff.args if hasattr(arg, 'value')])

    # Test factorization of terms
    m = 2 * (3 * (p0 + p1 * v1) + 3 * (2 * p0 + 3 * v0)) + v1

    v0_coeff = m.coefficient_of(v0)
    v1_coeff = m.coefficient_of(v1)

    if debug:
        print(m)

    assert (m.nterms == 5)
    assert (type(v0_coeff) == Constant)
    assert (type(v1_coeff) == sums.sum)
    assert (v0_coeff.value == 18)
    assert (v1_coeff.args[0].args[0].value == 6.0)
    assert (v1_coeff.args[0].args[1] == p1)
    assert (v1_coeff.args[1].value == 1.0)

    reset_symbols()