Exemplo n.º 1
0
 def jacobian(self, var):
     # not *quite* the jacobian, but nearly.
     if var is self.x:
         # each x_i: exp(x_i) / sum(exp(x)).
         x = value(self.x)
         return transpose(exp(x)) / sum(exp(x))
     elif var is self.t:
         return -eye(rows(self.t))
     else:
         raise OptimizationError("illegal jacobian")
Exemplo n.º 2
0
 def jacobian(self, var):
     # not *quite* the jacobian, but nearly.
     if var is self.x:
         # each x_i: exp(x_i) / sum(exp(x)).
         x = value(self.x)
         return transpose(exp(x)) / sum(exp(x))
     elif var is self.t:
         return -eye(rows(self.t))
     else:
         raise OptimizationError('illegal jacobian')
Exemplo n.º 3
0
 def hessianz(self, firstvar, secondvar, z):
     if firstvar is secondvar is self.x:
         # Want diag(e^x)/sum(e^x) - e^x/sum(e^x)*transpose(e^x/sum(e^x)).
         x = value(self.x)
         a = sum(exp(x))
         return z * (diag(exp(x)) / a - exp(x) / a * transpose(exp(x)) / a)
     elif firstvar is secondvar is self.t:
         return zeros(rows(self.t))
     elif firstvar is self.x and secondvar is self.t:
         return zeros(rows(self.x), rows(self.t))
     elif firstvar is self.t and secondvar is self.x:
         return zeros(rows(self.t), rows(self.x))
     else:
         raise OptimizationError('illegal hessian')
Exemplo n.º 4
0
 def hessianz(self, firstvar, secondvar, z):
     if firstvar is secondvar is self.x:
         # Want diag(e^x)/sum(e^x) - e^x/sum(e^x)*transpose(e^x/sum(e^x)).
         x = value(self.x)
         a = sum(exp(x))
         return z * (diag(exp(x)) / a - exp(x) / a * transpose(exp(x)) / a)
     elif firstvar is secondvar is self.t:
         return zeros(rows(self.t))
     elif firstvar is self.x and secondvar is self.t:
         return zeros(rows(self.x), rows(self.t))
     elif firstvar is self.t and secondvar is self.x:
         return zeros(rows(self.t), rows(self.x))
     else:
         raise OptimizationError("illegal hessian")
Exemplo n.º 5
0
        def classifier2(Y, soft=False):

            M = Y.size[0]

            # K = Y*X' / sigma
            K = matrix(0.0, (width, M))
            blas.gemm(X, Y, K, transB='T', alpha=1.0 / sigma, m=width)

            # c[i] = ||Yi||^2 / sigma
            ones = matrix(1.0, (max(width, n, M), 1))
            c = Y**2 * ones[:n]
            blas.scal(1.0 / sigma, c)

            # Kij := Kij - 0.5 * (ci + aj)
            #      = || yi - xj ||^2 / (2*sigma)
            blas.ger(ones[:width], c, K, alpha=-0.5)
            blas.ger(a[:width], ones[:M], K, alpha=-0.5)
            # Kij = exp(Kij)
            K = exp(K)

            # complete K
            lapack.potrs(L11, K)
            K = matrix([K, matrix(0., (N - width, M))], (N, M))
            chompack.trsm(Lc, K, trans='N')
            chompack.trsm(Lc, K, trans='T')

            x = matrix(b, (M, 1))
            blas.gemv(K, z, x, trans='T', beta=1.0)

            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])
Exemplo n.º 6
0
        def classifier2(Y, soft=False):

            M = Y.size[0]

            # K = Y*X' / sigma
            K = matrix(theta, (width, M))
            blas.gemm(X,
                      Y,
                      K,
                      transB='T',
                      alpha=1.0 / sigma,
                      beta=-1.0,
                      m=width)

            K = exp(K)
            K = div(K - K**-1, K + K**-1)

            # complete K
            lapack.potrs(L11, K)
            K = matrix([K, matrix(0., (N - width, M))], (N, M))
            chompack.trsm(Lc, K, trans='N')
            chompack.trsm(Lc, K, trans='T')

            x = matrix(b, (M, 1))
            blas.gemv(K, z, x, trans='T', beta=1.0)

            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])
Exemplo n.º 7
0
    def Gycall(self):
        system.DAE.y = matrix(system.DAE.y)
        U = exp(system.DAE.y[system.Bus.a] * 1j)
        V = mul(system.DAE.y[system.Bus.v] + 0j, U)
        I = self.Y * V
        nb = len(system.Bus.a)
        diagU = spmatrix(U, system.Bus.a, system.Bus.a, (nb, nb), 'z')
        diagV = spmatrix(V, system.Bus.a, system.Bus.a, (nb, nb), 'z')
        diagI = spmatrix(I, system.Bus.a, system.Bus.a, (nb, nb), 'z')
        dS = self.Y * diagU

        dS = diagV * dS.H.T

        dS += diagI.H.T * diagU
        dR = diagI
        dR = dR - self.Y * diagV

        dR = diagV.H.T * dR

        # system.DAE.Gy = matrix(0.0, (system.DAE.ny, system.DAE.ny))
        #
        # system.DAE._list2matrix()
        # system.DAE.Gy = spmatrix(dR.imag().V, dR.imag().I, dR.imag().J, (system.DAE.ny, system.DAE.ny)) \
        #                 + spmatrix(dR.real().V, dR.real().I, dR.real().J+system.Bus.n, (system.DAE.ny, system.DAE.ny)) \
        #                 + spmatrix(dS.real().V, dS.real().I+system.Bus.n, dS.real().J, (system.DAE.ny, system.DAE.ny)) \
        #                 + spmatrix(dS.imag().V, dS.imag().I+system.Bus.n, dS.imag().J+system.Bus.n, (system.DAE.ny, system.DAE.ny))

        Gy = sparse([[dR.imag(), dR.real()], [dS.real(), dS.imag()]])
        # system.DAE.Gy = zeros([system.DAE.ny,system.DAE.ny])
        system.DAE.Gy = spmatrix(Gy.V, Gy.I, Gy.J,
                                 (system.DAE.ny, system.DAE.ny))

        system.DAE.Gy = matrix(system.DAE.Gy)
Exemplo n.º 8
0
        def classifier(Y, soft=False):
            M = Y.size[0]
            # K = Y*X' / sigma - theta
            K = matrix(theta, (M, Nr))
            blas.gemm(Y, Xr, K, transB='T', alpha=1.0 / sigma, beta=-1.0)

            K = exp(K)
            x = div(K - K**-1, K + K**-1) * zr + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])
Exemplo n.º 9
0
    def setx0(self):

        if self.n == 0:
            return

        vg = system.DAE.y[self.bv]
        vf = mul(self.u, system.Syn6.vf0[self.a])
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        # 检查参数

        for i in range(self.n):
            if self.Te[i] <= 0:
                self.Te[i] = 1
                print('<%i> Te不能小于等于0,设置Te = 1 [s]' % i)
            if self.Tr[i] <= 0:
                self.Tr[i] = 0.001
                print('<%i> Tr不能小于等于0,设置Te = 0.001 [s]' % i)
            if self.K0[i] <= 0:
                self.K0[i] = 400
                print('<%i> K0不能小于等于0,设置K0 = 400 ' % i)
            if self.T1[i] <= 0:
                self.T1[i] = 0.1
                print('<%i> T1不能小于等于0,设置T1 = 0.1 [s]' % i)
            if self.T4[i] <= 0:
                self.T4[i] = 0.01
                print('<%i> T4不能小于等于0,设置T4 = 0.01 [s]' % i)

        #
        Ce = -vf - mul(mul(self.Ae, exp(mul(self.Be, vf))), vf)
        K1 = mul(self.K0, div(self.T2, self.T1))
        K2 = self.K0 - K1
        K3 = div(self.T3, self.T4)
        K4 = 1 - K3

        system.DAE.x[self.vm] = mul(self.u, vg)
        self.vref0 = vg - div(Ce, self.K0)

        system.DAE.x[self.vr1] = mul(self.u, mul(K2, self.vref0 - vg))
        system.DAE.x[self.vr2] = mul(self.u, mul(K4, self.vref0 - vg))
        system.DAE.x[self.vf] = vf

        system.DAE.y[self.vref] = mul(self.u, self.vref0)

        vr = mul(self.u, mul(self.K0, system.DAE.x[self.vr2])) + mul(
            K3,
            mul(K1, self.vref0 - vg) + system.DAE.x[self.vr1])
        for i in range(self.n):
            if vr[i] > self.vrmax[i]:
                print('Warn: vr1超出最大值vrmax')
            if vr[i] < self.vrmin[i]:
                print('Warn: vr1小于最小值vrmin')

        system.Syn6.vf0[self.a] = 0
Exemplo n.º 10
0
    def Fxcall(self):

        if self.n == 0:
            return

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        system.DAE.Gx = system.DAE.Gx + spmatrix(
            self.u, self.vfd, self.vf, (system.DAE.ny, system.DAE.nx))
        system.DAE.Fx = system.DAE.Fx - spmatrix(
            div(matrix(1.0, (self.n, 1)), self.Tr), self.vm, self.vm,
            (system.DAE.nx, system.DAE.nx))
        system.DAE.Fy = system.DAE.Fy + spmatrix(div(
            self.u, self.Tr), self.vm, self.bv, (system.DAE.nx, system.DAE.ny))

        vm = system.DAE.x[self.vm]
        vr1 = system.DAE.x[self.vr1]
        vr2 = system.DAE.x[self.vr2]
        vf = system.DAE.x[self.vf]
        vref = system.DAE.y[self.vref]

        K1 = div(mul(self.K0, self.T2), self.T1)
        K2 = self.K0 - K1
        K3 = div(self.T4, self.T3)
        K4 = matrix(1, (self.n, 1)) - K3

        vr = mul(self.K0, vr2) + mul(K3, mul(K1, vref - vm) + vr1)

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        Se = Se + mul(mul(Se, self.Ae), vf)

        z = matrix(0, (self.n, 1))
        for i in range(self.n):
            if vr[i] < vrmax[i] and vr[i] > vrmin[i]:
                z[i] = 1

        system.DAE.Fx = system.DAE.Fx \
                        - spmatrix(div(K2, self.T1), self.vr1, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.T1), self.vr1, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(K4, K1), mul(self.K0, self.T3)), self.vr2, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(K4, mul(self.T3, self.K0)), self.vr2, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.T3), self.vr2, self.vr2, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(1+Se, self.Te), self.vf, self.vf, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(mul(z, K3), self.Te), self.vf, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(mul(z, K3), K1), self.Te), self.vf, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(mul(mul(z, self.u), self.K0), self.Te), self.vf, self.vr2, (system.DAE.nx, system.DAE.nx))

        system.DAE.Fy = system.DAE.Fy \
                        + spmatrix(div(K2, self.T1), self.vr1, self.vref, (system.DAE.nx, system.DAE.ny)) \
                        + spmatrix(div(mul(K4, K1), mul(self.K0, self.T3)), self.vr2, self.vref, (system.DAE.nx, system.DAE.ny)) \
                        + spmatrix(div(mul(mul(z, K3), K1), self.Te), self.vf, self.vref, (system.DAE.nx, system.DAE.ny))
Exemplo n.º 11
0
    def Fgp(x = None, z = None):

        if x is None: return mnl, matrix(0.0, (n,1))

        f = matrix(0.0, (mnl+1,1))
        Df = matrix(0.0, (mnl+1,n))

        # y = F*x+g
        blas.copy(g, y)
        base.gemv(F, x, y, beta=1.0)

        if z is not None: H = matrix(0.0, (n,n))

        for i, start, stop in ind:

            # yi := exp(yi) = exp(Fi*x+gi)
            ymax = max(y[start:stop])
            y[start:stop] = base.exp(y[start:stop] - ymax)

            # fi = log sum yi = log sum exp(Fi*x+gi)
            ysum = blas.asum(y, n=stop-start, offset=start)
            f[i] = ymax + math.log(ysum)

            # yi := yi / sum(yi) = exp(Fi*x+gi) / sum(exp(Fi*x+gi))
            blas.scal(1.0/ysum, y, n=stop-start, offset=start)

            # gradfi := Fi' * yi
            #        = Fi' * exp(Fi*x+gi) / sum(exp(Fi*x+gi))
            base.gemv(F, y, Df, trans='T', m=stop-start, incy=mnl+1,
                offsetA=start, offsetx=start, offsety=i)

            if z is not None:

                # Hi = Fi' * (diag(yi) - yi*yi') * Fi
                #    = Fisc' * Fisc
                # where
                # Fisc = diag(yi)^1/2 * (I - 1*yi') * Fi
                #      = diag(yi)^1/2 * (Fi - 1*gradfi')

                Fsc[:K[i], :] = F[start:stop, :]
                for k in range(start,stop):
                   blas.axpy(Df, Fsc, n=n, alpha=-1.0, incx=mnl+1,
                       incy=Fsc.size[0], offsetx=i, offsety=k-start)
                   blas.scal(math.sqrt(y[k]), Fsc, inc=Fsc.size[0],
                       offset=k-start)

                # H += z[i]*Hi = z[i] * Fisc' * Fisc
                blas.syrk(Fsc, H, trans='T', k=stop-start, alpha=z[i],
                    beta=1.0)

        if z is None:
            return f, Df
        return f, Df, H
Exemplo n.º 12
0
    def flow(self, y):

        if y is not None:

            system.DAE.y = matrix(y)
        if self.n == 0:
            return

        chrg = mul(matrix(self.u), 0.5 * matrix(self.b))
        y = div(matrix(self.u) + 0j, matrix(matrix(self.r) + 1j * matrix(self.x)))
        ts = exp(matrix(self.theta) * math.pi / 180 * 1j)
        tps = mul(matrix(self.tap_ratio), ts)
        tpj = tps.H.T
        ts2 = mul(tps, tpj)

        Vf = mul(system.DAE.y[self.vf], exp(system.DAE.y[self.af]*1j))
        Vt = mul(system.DAE.y[self.vt], exp(system.DAE.y[self.at] * 1j))

        I1 = div(mul(Vf, y+1j*chrg),ts2)-div(mul(Vt, y), tpj)
        I2 = mul(Vt, y + 1j * chrg) - div(mul(Vf, y), tps)
        MWs = mul(Vf, I1.H.T)
        MWr = mul(Vt, I2.H.T)

        return [MWs, MWr]
Exemplo n.º 13
0
    def setx0(self):

        vg = system.DAE.y[self.bv]
        vf = mul(self.u, system.Syn6.vf0[self.a])
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        # 检查参数

        for i in range(self.n):
            if self.Te[i] == 0:
                self.Te[i] = 1
                print('<%i> Te不能小于等于0,设置Te = 1 [s]' % i)
            if self.Tr[i] <= 0:
                self.Tr[i] = 0.001
                print('<%i> Tr不能小于等于0,设置Te = 0.001 [s]' % i)
            if self.Ke[i] <= 0:
                self.Ke[i] = 1
                print('<%i> Ke不能小于等于0,设置Ke = 1 ' % i)
            if self.Tf[i] <= 0:
                self.Tf[i] = 0.1
                print('<%i> T1不能小于等于0,设置T1 = 0.1 [s]' % i)
            if self.Ta[i] <= 0:
                self.Ta[i] = 0.1
                print('<%i> T4不能小于等于0,设置T4 = 0.1 [s]' % i)

        #
        Ce = mul(self.Ke, vf) + mul(mul(self.Ae, exp(mul(self.Be, abs(vf)))),
                                    vf)

        system.DAE.x[self.vm] = mul(self.u, vg)
        self.vref0 = div(Ce, self.Ka) + vg

        system.DAE.x[self.vr1] = Ce
        system.DAE.x[self.vr2] = div(mul(-self.Kf, vf), self.Tf)
        system.DAE.x[self.vf] = vf

        system.DAE.y[self.vref] = mul(self.u, self.vref0)

        for i in range(self.n):
            if Ce[i] > self.vrmax[i]:
                print('Warn: vr1超出最大值vrmax')
            if Ce[i] < self.vrmin[i]:
                print('Warn: vr1小于最小值vrmin')

        for i in range(self.n):
            if self.u[i] == 1:
                system.Syn6.vf0[self.a[i]] = 0
Exemplo n.º 14
0
    def gcall(self):

        system.DAE.y = matrix(system.DAE.y)
        zeros = [0.0] * system.DAE.ny
        system.DAE.g = zeros
        system.DAE.g = matrix(system.DAE.g)
        Vn = exp(system.DAE.y[system.Bus.a] * 1j)
        Vc = mul(system.DAE.y[system.Bus.v] + 0j, Vn)
        Ic = self.Y * Vc
        S = mul(Vc, Ic.H.T)

        self.p = S.real()

        self.q = S.imag()

        for i in range(system.Bus.n):
             system.DAE.g[i] = self.p[i]
             system.DAE.g[i+system.Bus.n] = self.q[i]
Exemplo n.º 15
0
        def classifier(Y, soft=False):
            M = Y.size[0]
            # K = Y*X' / sigma
            K = matrix(0.0, (M, Nr))
            blas.gemm(Y, Xr, K, transB='T', alpha=1.0 / sigma)

            # c[i] = ||Yi||^2 / sigma
            ones = matrix(1.0, (max([M, Nr, n]), 1))
            c = Y**2 * ones[:n]
            blas.scal(1.0 / sigma, c)

            # Kij := Kij - 0.5 * (ci + aj)
            #      = || yi - xj ||^2 / (2*sigma)
            blas.ger(c, ones, K, alpha=-0.5)
            blas.ger(ones, a[sv], K, alpha=-0.5)
            x = exp(K) * zr + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])
Exemplo n.º 16
0
    def fcall(self):

        if self.n == 0:
            return

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)
        vm = system.DAE.x[self.vm]
        vr1 = system.DAE.x[self.vr1]
        vr2 = system.DAE.x[self.vr2]
        vf = system.DAE.x[self.vf]
        vref = system.DAE.y[self.vref]

        system.DAE.f[self.vm] = div(mul(self.u, vg - system.DAE.x[self.vm]),
                                    self.Tr)

        K1 = div(mul(self.K0, self.T2), self.T1)
        K2 = self.K0 - K1
        K3 = div(self.T4, self.T3)
        K4 = matrix(1, (self.n, 1)) - K3

        vr = mul(self.K0, vr2) + mul(K3, mul(K1, vref - vm) + vr1)

        system.DAE.f[self.vr1] = div(mul(self.u,
                                         mul(K2, vref - vm) - vr1), self.T1)
        system.DAE.f[self.vr2] = div(
            mul(self.u,
                mul(K4, vr1 + mul(K1, vref - vm)) - mul(self.K0, vr2)),
            mul(self.T3, self.K0))

        # hard limit

        for i in range(self.n):
            vr[i] = min(vr[i], vrmax[i])
            vr[i] = max(vr[i], vrmin[i])

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        system.DAE.f[self.vf] = div(mul(self.u, -vf + vr - mul(Se, vf)),
                                    self.Te)
Exemplo n.º 17
0
    def Fxcall(self):

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        system.DAE.Gx = system.DAE.Gx + spmatrix(
            self.u, self.vfd, self.vf, (system.DAE.ny, system.DAE.nx))
        system.DAE.Fx = system.DAE.Fx - spmatrix(
            div(matrix(1.0, (self.n, 1)), self.Tr), self.vm, self.vm,
            (system.DAE.nx, system.DAE.nx))
        system.DAE.Fy = system.DAE.Fy + spmatrix(div(
            self.u, self.Tr), self.vm, self.bv, (system.DAE.nx, system.DAE.ny))

        vr1 = system.DAE.x[self.vr1]
        vf = system.DAE.x[self.vf]
        Ka = mul(self.u, self.Ka)
        Kf = mul(self.u, self.Kf)
        K5 = div(Kf, self.Tf)

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        Se = Se + mul(mul(Se, self.Be), vf)

        z = matrix(0, (self.n, 1))
        for i in range(self.n):
            if vr1[i] < vrmax[i] and vr1[i] > vrmin[i]:
                z[i] = 1

        system.DAE.Fx = system.DAE.Fx \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.Tf), self.vr2, self.vr2, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(K5, self.Tf), self.vr2, self.vf, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(self.Ke+Se, self.Te), self.vf, self.vf, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(z, self.Te), self.vf, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(z, Ka), self.Ta), self.vr1, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.Ta), self.vr1, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(z, Ka), self.Ta), self.vr1, self.vr2, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(mul(z, K5), Ka), self.Ta), self.vr1, self.vf, (system.DAE.nx, system.DAE.nx))
        system.DAE.Fy = system.DAE.Fy \
                        + spmatrix(div(mul(z, Ka), self.Ta), self.vr1, self.vref, (system.DAE.nx, system.DAE.ny))
Exemplo n.º 18
0
    def fcall(self):

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)
        vm = system.DAE.x[self.vm]
        vr1 = system.DAE.x[self.vr1]
        vr2 = system.DAE.x[self.vr2]
        vf = system.DAE.x[self.vf]
        vref = system.DAE.y[self.vref]

        system.DAE.f[self.vm] = div(mul(self.u, vg - system.DAE.x[self.vm]),
                                    self.Tr)  #

        K5 = div(self.Kf, self.Tf)

        system.DAE.f[self.vr1] = div(
            mul(self.u,
                mul(self.Ka, vref - vm - vr2 - mul(K5, vf)) - vr1), self.Ta)
        system.DAE.f[self.vr2] = div(mul(-self.u, mul(K5, vf) + vr2), self.Tf)

        # non-windup limit

        for i in range(self.n):
            if vr1[i] >= vrmax[i] and system.DAE.f[self.vr1[i]] > 0:
                system.DAE.f[self.vr1[i]] = 0
            if vr1[i] <= vrmin[i] and system.DAE.f[self.vr1[i]] < 0:
                system.DAE.f[self.vr1[i]] = 0

        for i in range(self.n):
            vr1[i] = min(vr1[i], vrmax[i])
            vr1[i] = max(vr1[i], vrmin[i])

        system.DAE.x[self.vr1] = mul(self.u, vr1)

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        system.DAE.f[self.vf] = div(
            mul(self.u, vr1 - mul(self.Ke, vf) - mul(Se, vf)), self.Te)
Exemplo n.º 19
0
    def gcall(self):

        zeros = [0] * system.Bus.n
        Vn = zeros[:]
        Vc = zeros[:]
        for item1, item2 in zip(system.Bus.a, system.Bus.v):
            Vn[item1] = exp(system.DAE.y[item1] * 1j)
            Vc[item1] = (system.DAE.y[item2] + 0j) * Vn[item1]
        # system.DAE.y = matrix(system.DAE.y)
        # Vn = exp(system.DAE.y[system.Bus.a] * 1j)
        # Vc = mul(system.DAE.y[system.Bus.v] + 0j, Vn)
        Vc = matrix(Vc)
        Ic = self.Y * Vc
        S = mul(Vc, Ic.H.T)

        self.p = S.real()

        self.q = S.imag()

        for i in range(system.Bus.n):
            system.DAE.g[i] = self.p[i]
            system.DAE.g[i + system.Bus.n] = self.q[i]
Exemplo n.º 20
0
    def Fgp(x=None, z=None):

        if x is None: return mnl, matrix(0.0, (n, 1))

        f = matrix(0.0, (mnl + 1, 1))
        Df = matrix(0.0, (mnl + 1, n))

        # y = F*x+g
        blas.copy(g, y)
        base.gemv(F, x, y, beta=1.0)

        if z is not None: H = matrix(0.0, (n, n))

        for i, start, stop in ind:

            # yi := exp(yi) = exp(Fi*x+gi)
            ymax = max(y[start:stop])
            y[start:stop] = base.exp(y[start:stop] - ymax)

            # fi = log sum yi = log sum exp(Fi*x+gi)
            ysum = blas.asum(y, n=stop - start, offset=start)
            f[i] = ymax + math.log(ysum)

            # yi := yi / sum(yi) = exp(Fi*x+gi) / sum(exp(Fi*x+gi))
            blas.scal(1.0 / ysum, y, n=stop - start, offset=start)

            # gradfi := Fi' * yi
            #        = Fi' * exp(Fi*x+gi) / sum(exp(Fi*x+gi))
            base.gemv(F,
                      y,
                      Df,
                      trans='T',
                      m=stop - start,
                      incy=mnl + 1,
                      offsetA=start,
                      offsetx=start,
                      offsety=i)

            if z is not None:

                # Hi = Fi' * (diag(yi) - yi*yi') * Fi
                #    = Fisc' * Fisc
                # where
                # Fisc = diag(yi)^1/2 * (I - 1*yi') * Fi
                #      = diag(yi)^1/2 * (Fi - 1*gradfi')

                Fsc[:K[i], :] = F[start:stop, :]
                for k in range(start, stop):
                    blas.axpy(Df,
                              Fsc,
                              n=n,
                              alpha=-1.0,
                              incx=mnl + 1,
                              incy=Fsc.size[0],
                              offsetx=i,
                              offsety=k - start)
                    blas.scal(math.sqrt(y[k]),
                              Fsc,
                              inc=Fsc.size[0],
                              offset=k - start)

                # H += z[i]*Hi = z[i] * Fisc' * Fisc
                blas.syrk(Fsc,
                          H,
                          trans='T',
                          k=stop - start,
                          alpha=z[i],
                          beta=1.0)

        if z is None:
            return f, Df
        return f, Df, H
Exemplo n.º 21
0
    def build_y(self):

        if self.n == 0:
            return
        for i in range(len(self.tap_ratio)):
            if self.tap_ratio[i] == 0:
                self.tap_ratio[i] = 1
        nb = system.Bus.n

        # 处理传输线数据和生成导纳矩阵

        chrg = mul(matrix(self.u), 0.5 * matrix(self.b))
        y = div(matrix(self.u) + 0j, matrix(matrix(self.r) + 1j * matrix(self.x)))
        ts = exp(matrix(self.theta) * math.pi / 180 * 1j)
        ts = mul(matrix(self.tap_ratio), ts)
        ts2 = mul(ts, ts.H.T)

        # ts2real = ts2.real()
        # ts2imag = ts2.imag()
        # for i in range(len(ts2)):
        #     ts2real[i] = round(ts2real[i], 15)
        #     ts2imag[i] = round(ts2imag[i], 15)
        # ts2 = ts2real + 1j*ts2imag

        yft = div(-y, ts.H.T)
        # yftreal = yft.real()
        # yftimag = yft.imag()

        ytf = div(-y, ts)
        # ytfreal = ytf.real()
        # ytfimag = ytf.imag()

        yff = div(y, ts2) + 1j*chrg
        # yffreal = yff.real()
        # yffimag = yff.imag()

        ytt = y + 1j*chrg
        # yttreal = ytt.real()
        # yttimag = ytt.imag()

        # for i in range(len(ytt)):
        #     yftreal[i] = round(yftreal[i], 15)
        #     yftimag[i] = round(yftimag[i], 15)
        #
        #     ytfreal[i] = round(ytfreal[i], 15)
        #     ytfimag[i] = round(ytfimag[i], 15)
        #
        #     yffreal[i] = round(yffreal[i], 15)
        #     yffimag[i] = round(yffimag[i], 15)
        #
        #     yttreal[i] = round(yttreal[i], 15)
        #     yttimag[i] = round(yttimag[i], 15)
        #
        # yft = yftreal + 1j * yftimag
        # ytt = yttreal + 1j * yttimag
        # yff = yffreal + 1j * yffimag
        # ytf = ytfreal + 1j * ytfimag



        self.Y = spmatrix(yft, self.af, self.at, (nb, nb)) +\
            spmatrix(ytf, self.at, self.af, (nb, nb)) +\
            spmatrix(yff, self.af, self.af, (nb, nb)) +\
            spmatrix(ytt, self.at, self.at, (nb, nb))

        for i in range(nb):
            if self.Y[i, i] == 0:
                self.Y[i, i] == -1j*1e-6
        system.DAE.Y = self.Y

        system.DAE.Y_G = self.Y.real()

        system.DAE.Y_B = self.Y.imag()
Exemplo n.º 22
0
def eval(obj):
    return cvxopt.base.log(sum(exp(obj)))
Exemplo n.º 23
0
    def setx0(self):

        # 常数
        self.c1 = [0] * self.n
        self.c2 = [0] * self.n
        self.c3 = [0] * self.n

        # 检查参数
        for i in range(self.n):
            # 检查惯性 M 和 x'd
            if self.M[i] <= 0:
                self.M[i] = 10
                print('%i 惯性M不能小于等于0,设置M = 10 [kWs/kVa]' % i)
            if self.xd1[i] <= 0:
                self.xd1[i] = 0.302
                print("%i x'd不能小于等于0,设置x'd = 0.302 [p.u.]" % i)

            # 检查 xd, T'd0
            if self.xd[i] <= 0:
                self.xd[i] = 1.9
                print("%i xd不能小于等于0,设置xd = 1.9 [p.u.]" % i)
            if self.Td01[i] <= 0:
                self.Td01[i] = 8
                print("%i T'd0不能小于等于0,设置T'd0 = 8 [s]" % i)

            # 检查 T''d0, x''d 和 x''q
            if self.Td02[i] <= 0:
                self.Td02[i] = 0.04
                print("%i T''d0不能小于等于0,设置T''d0 = 0.04 [s]" % i)
            if self.xd2[i] <= 0:
                self.xd2[i] = 0.204
                print("%i xd2不能小于等于0,设置xd2= 0.204 [p.u.]" % i)
            if self.xq2[i] <= 0:
                self.xq2[i] = 0.30
                print("%i xq2不能小于等于0,设置xq2= 0.30 [p.u.]" % i)

            # 检查 T'q0
            if self.Tq01[i] <= 0:
                self.Tq01[i] = 0.80
                print("%i T'q0不能小于等于0,设置T'q0 = 0.80 [s]" % i)

            # 检查 T''q0
            if self.Tq02[i] <= 0:
                self.Tq02[i] = 0.02
                print("%i T''q0不能小于等于0,设置T''q0 = 0.02 [s]" % i)

            # 检查 xq x'q
            if self.xq[i] <= 0:
                self.xq[i] = 1.70
                print("%i xq不能小于等于0,设置xq = 1.70 [p.u.]" % i)
            if self.xq1[i] <= 0:
                self.xq1[i] = 0.5
                print("%i xq1不能小于等于0,设置xq1 = 0.5 [p.u.]" % i)

            # 检查Taa和饱和因子

        # 转子速度

        system.DAE._list2matrix()

        system.DAE.x[self.omega] = self.u

        # 检查有功、无功比例
        # idx = []
        # for i in self.a:
        #     for index, j in enumerate(self.a):
        #         if j == i:
        #             idx.append(i)
        #     if len(idx) == 1:
        #         for i in range(self.n):
        #            if self.ganmaP[i] != 1:
        #                self.
        # 功率和转子角速度

        # print(mul(matrix(self.u), matrix(system.Bus.Pg[self.a])))
        system.DAE.y[self.p] = mul(mul(self.u, matrix(system.Bus.Pg[self.a])),
                                   self.ganmaP)
        system.DAE.y[self.q] = mul(mul(self.u, matrix(system.Bus.Qg[self.a])),
                                   self.ganmaQ)

        self.Pg0 = system.DAE.y[self.p]
        Vg = matrix(system.DAE.y[self.v] + 0j)
        ag = matrix(exp(system.DAE.y[self.a] * 1j))
        V = mul(Vg, ag)
        S = system.DAE.y[self.p] - system.DAE.y[self.q] * 1j
        I = div(S, V.H.T)

        delta = np.angle(V + mul((self.ra + self.xq * 1j), I))
        # print(mul(matrix(self.u), matrix(delta)))
        # a = mul(matrix(self.u), matrix(delta))
        # print(type(system.DAE.x[0]))
        system.DAE.x[self.delta] = mul(self.u, matrix(delta))

        # d、q轴电压和电流
        jpi2 = math.pi / 2 * 1j
        # jpi2 = 1.5707963267948966j
        Vdq = mul(self.u + 0j, mul(V, exp(matrix(jpi2 - delta * 1j))))
        idq = mul(self.u + 0j, mul(I, exp(matrix(jpi2 - delta * 1j))))

        Vd = Vdq.real()
        Vq = Vdq.imag()
        Id = idq.real()
        Iq = idq.imag()

        # 机械转矩/功率

        self.pm0 = mul(Vq + mul(self.ra, Iq), Iq) + \
            mul(Vd + mul(self.ra, Id), Id)
        self.suijipm0.append(self.pm0)
        system.DAE.y[self.pm] = self.pm0

        # 剩余状态变量和场电压
        K = div(1, (self.ra**2 + mul(self.xq2, self.xd2)))
        self.c1 = mul(self.ra, K)
        self.c2 = mul(self.xd2, K)
        self.c3 = mul(self.xq2, K)

        system.DAE.x[self.e2q] = Vq + mul(self.ra, Iq) + mul(self.xd2, Id)
        system.DAE.x[self.e2d] = Vd + mul(self.ra, Id) - mul(self.xq2, Iq)
        system.DAE.x[self.e1d] = mul(
            self.xq - self.xq1 -
            div(mul(mul(self.Tq02, self.xq2), self.xq - self.xq1),
                mul(self.Tq01, self.xq1)), Iq)
        K1 = self.xd - self.xd1 - div(
            (mul(mul(self.Td02, self.xd2),
                 (self.xd - self.xd1))), mul(self.Td01, self.xd1))
        K2 = self.xd1 - self.xd2 + div(
            mul(mul(self.Td02, self.xd2), self.xd - self.xd1),
            mul(self.Td01, self.xd1))
        system.DAE.x[self.e1q] = system.DAE.x[self.e2q] + mul(K2, Id) - div(
            mul(self.Taa,
                mul(K1 + K2, Id) + system.DAE.x[self.e2q]), self.Td01)

        # print(type(system.Syn6.synsat()))
        # print(system.Syn6.synsat())
        self.vf0 = div(
            mul(K1, Id) + system.Syn6.synsat(), 1 - div(self.Taa, self.Td01))
        system.DAE.y[self.vf] = self.vf0

        # !!! 移除静态发电机节点
        system.SW.remove(idx='SW_1')
        for i in range(system.PV.n):
            idx = 'PV_' + str(i + 1)
            system.PV.remove(idx)
Exemplo n.º 24
0
def eval(obj):
    return cvxopt.base.log(sum(exp(obj)))
Exemplo n.º 25
0
def kernel_matrix(X,
                  kernel,
                  sigma=1.0,
                  theta=1.0,
                  degree=1,
                  V=None,
                  width=None):
    """
    Computes the kernel matrix or a partial kernel matrix.

    Input arguments.

        X is an N x n matrix.

        kernel is a string with values 'linear', 'rfb', 'poly', or 'tanh'.
        'linear': k(u,v) = u'*v/sigma.
        'rbf':    k(u,v) = exp(-||u - v||^2 / (2*sigma)).
        'poly':   k(u,v) = (u'*v/sigma)**degree.
        'tanh':   k(u,v) = tanh(u'*v/sigma - theta).        kernel is a

        sigma and theta are positive numbers.

        degree is a positive integer.

        V is an N x N sparse matrix (default is None).

        width is a positive integer (default is None).

    Output.

        Q, an N x N matrix or sparse matrix.
        If V is a sparse matrix, a partial kernel matrix with the sparsity
        pattern V is returned.
        If width is specified and V = 'band', a partial kernel matrix
        with band sparsity is returned (width is the half-bandwidth).

        a, an N x 1 matrix with the products <xi,xi>/sigma.

    """
    N, n = X.size

    #### dense (full) kernel matrix
    if V is None:
        if verbose: print("building kernel matrix ..")

        # Qij = xi'*xj / sigma
        Q = matrix(0.0, (N, N))
        blas.syrk(X, Q, alpha=1.0 / sigma)
        a = Q[::N + 1]  # ai = ||xi||**2 / sigma

        if kernel == 'linear':
            pass

        elif kernel == 'rbf':
            # Qij := Qij - 0.5 * ( ai + aj )
            #      = -||xi - xj||^2 / (2*sigma)
            ones = matrix(1.0, (N, 1))
            blas.syr2(a, ones, Q, alpha=-0.5)

            Q = exp(Q)

        elif kernel == 'tanh':
            Q = exp(Q - theta)
            Q = div(Q - Q**-1, Q + Q**-1)

        elif kernel == 'poly':
            Q = Q**degree

        else:
            raise ValueError('invalid kernel type')

    #### general sparse partial kernel matrix
    elif type(V) is cvxopt.base.spmatrix:

        if verbose: print("building projected kernel matrix ...")
        Q = +V
        base.syrk(X, Q, partial=True, alpha=1.0 / sigma)

        # ai = ||xi||**2 / sigma
        a = matrix(Q[::N + 1], (N, 1))

        if kernel == 'linear':
            pass

        elif kernel == 'rbf':

            ones = matrix(1.0, (N, 1))

            # Qij := Qij - 0.5 * ( ai + aj )
            #      = -||xi - xj||^2 / (2*sigma)
            p = chompack.maxcardsearch(V)
            symb = chompack.symbolic(Q, p)
            Qc = chompack.cspmatrix(symb) + Q
            chompack.syr2(Qc, a, ones, alpha=-0.5)
            Q = Qc.spmatrix(reordered=False)
            Q.V = exp(Q.V)

        elif kernel == 'tanh':

            v = +Q.V
            v = exp(v - theta)
            v = div(v - v**-1, v + v**-1)
            Q.V = v

        elif kernel == 'poly':

            Q.V = Q.V**degree

        else:
            raise ValueError('invalid kernel type')

    #### banded partial kernel matrix
    elif V == 'band' and width is not None:

        # Lower triangular part of band matrix with bandwidth 2*w+1.
        if verbose: print("building projected kernel matrix ...")
        I = [i for k in range(N) for i in range(k, min(width + k + 1, N))]
        J = [k for k in range(N) for i in range(min(width + 1, N - k))]
        V = matrix(0.0, (len(I), 1))
        oy = 0
        for k in range(N):  # V[:,k] = Xtrain[k:k+w, :] * Xtrain[k,:].T
            m = min(width + 1, N - k)
            blas.gemv(X,
                      X,
                      V,
                      m=m,
                      ldA=N,
                      incx=N,
                      offsetA=k,
                      offsetx=k,
                      offsety=oy)
            oy += m
        blas.scal(1.0 / sigma, V)

        # ai = ||xi||**2 / sigma
        a = matrix(V[[i for i in range(len(I)) if I[i] == J[i]]], (N, 1))

        if kernel == 'linear':

            Q = spmatrix(V, I, J, (N, N))

        elif kernel == 'rbf':

            Q = spmatrix(V, I, J, (N, N))

            ones = matrix(1.0, (N, 1))

            # Qij := Qij - 0.5 * ( ai + aj )
            #      = -||xi - xj||^2 / (2*sigma)
            symb = chompack.symbolic(Q)
            Qc = chompack.cspmatrix(symb) + Q
            chompack.syr2(Qc, a, ones, alpha=-0.5)
            Q = Qc.spmatrix(reordered=False)
            Q.V = exp(Q.V)

        elif kernel == 'tanh':

            V = exp(V - theta)
            V = div(V - V**-1, V + V**-1)
            Q = spmatrix(V, I, J, (N, N))

        elif kernel == 'poly':

            Q = spmatrix(V**degree, I, J, (N, N))

        else:
            raise ValueError('invalid kernel type')
    else:
        raise TypeError('invalid type V')

    return Q, a