Exemplo n.º 1
0
def test_RingOscillator():
	# problem in section 4.3 of [DSZ]
	from cxroots import Rectangle, findRoots

	def A(z):
		t = 2.
		return np.array([[-0.0166689-2.12e-14*z, 1/60. + 6e-16*exp(-t*z)*z],
		 		  		 [0.0166659+exp(-t*z)*(-0.000037485+6e-16*z), -0.0166667-6e-16*z]])

	def dA(z):
		t = 2.
		return np.array([[-2.12e-14*np.ones_like(z), 6e-16*exp(-t*z) - t*6e-16*exp(-t*z)*z],
				   		 [-t*exp(-t*z)*(-0.000037485+6e-16*z)+exp(-t*z)*6e-16, -6e-16*np.ones_like(z)]])
	
	def f(z):
		AVal = np.rollaxis(A(z),-1,0)
		return np.linalg.det(AVal)

	def df(z):
		AVal  = A(z)
		dAVal = dA(z)
		return dAVal[0,0]*AVal[1,1] + AVal[0,0]*dAVal[1,1] - dAVal[0,1]*AVal[1,0] - AVal[0,1]*dAVal[1,0]


	box = Rectangle([-12,0], [-40,40])
	# roots_fdf = findRoots(box, f, df)
	# roots_f = findRoots(box, f)

	# XXX: No roots are recorded within the initial contour.
	# 	Perhaps because the coefficents of z are very small?
	# 	Perhaps need higher precision?
	assert box.count_enclosed_roots(f, df) != 0
	assert box.count_enclosed_roots(f) != 0
Exemplo n.º 2
0
class TestRootfinding_151(unittest.TestCase, RootfindingTests,
                          MultiplicityTests):
    def setUp(self):
        # Ex 1.5.1 from [KB]
        self.C = Rectangle([-2, 2], [-2, 3])
        self.f = lambda z: exp(3 * z) + 2 * z * cos(z) - 1
        self.df = lambda z: 3 * exp(3 * z) + 2 * cos(z) - 2 * z * sin(z)

        self.roots = np.array([
            -1.84423395326221337491592440, 0,
            0.5308949302929305274642203840 - 1.331791876751120981651544228j,
            0.5308949302929305274642203840 + 1.331791876751120981651544228j
        ],
                              dtype=complex)
        self.multiplicities = [1, 1, 1, 1]

    def test_rootfinding_b_df(self):
        roots_approx_equal(self.C.roots(self.f, self.df, verbose=True, M=2),
                           (self.roots, self.multiplicities),
                           decimal=12)

    def test_rootfinding_b_f(self):
        roots_approx_equal(self.C.roots(self.f, verbose=True, M=2),
                           (self.roots, self.multiplicities),
                           decimal=12)
Exemplo n.º 3
0
    def setUp(self):
        # Ex 1.5.1 from [KB]
        self.C = Rectangle([-2, 2], [-2, 3])
        self.f = lambda z: exp(3 * z) + 2 * z * cos(z) - 1
        self.df = lambda z: 3 * exp(3 * z) + 2 * cos(z) - 2 * z * sin(z)

        self.roots = np.array([
            -1.84423395326221337491592440, 0,
            0.5308949302929305274642203840 - 1.331791876751120981651544228j,
            0.5308949302929305274642203840 + 1.331791876751120981651544228j
        ],
                              dtype=complex)
        self.multiplicities = [1, 1, 1, 1]
Exemplo n.º 4
0
def test_count_roots(useDerivative):
	"""
	Example from "Locating all the Zeros of an Analytic Function in one Complex Variable"
	M.Dellnitz, O.Schutze, Q.Zheng, J. Compu. and App. Math. (2002), Vol.138, Issue 2

	There should be 424 roots inside this contour
	"""
	C  = Rectangle([-20.3,20.7], [-20.3,20.7])
	f  = lambda z: z**50 + z**12 - 5*sin(20*z)*cos(12*z) - 1
	df = lambda z: 50*z**49 + 12*z**11 + 60*sin(12*z)*sin(20*z) - 100*cos(12*z)*cos(20*z)

	if not useDerivative: df = None

	assert C.count_roots(f, df, verbose=True) == 424
Exemplo n.º 5
0
    def setUp(self):
        self.C = Rectangle([-2, 2], [-2, 2])
        self.f = lambda z: z**3 * (z - 1.2)**2
        self.df = lambda z: 3 * (z)**2 * (z - 1.2)**2 + 2 * z**3 * (z - 1.2)

        self.roots = [0, 1.2]
        self.multiplicities = [3, 2]
Exemplo n.º 6
0
    def setUp(self):
        self.roots = roots = [0, -1.234, 1 + 1j, 1 - 1j, 2.345]
        self.multiplicities = [1, 1, 1, 1, 1]
        self.f = lambda z: (z - roots[0]) * (z - roots[1]) * (z - roots[2]) * (
            z - roots[3]) * (z - roots[4])
        self.df = lambda z: (z - roots[1]) * (z - roots[2]) * (z - roots[
            3]) * (z - roots[4]) + (z - roots[0]) * (z - roots[2]) * (
                z - roots[3]) * (z - roots[4]) + (z - roots[0]) * (z - roots[
                    1]) * (z - roots[3]) * (z - roots[4]) + (z - roots[0]) * (
                        z - roots[1]) * (z - roots[2]) * (z - roots[4]) + (
                            z - roots[0]) * (z - roots[1]) * (z - roots[2]) * (
                                z - roots[3])

        self.Circle = Circle(0, 3)
        self.Rectangle = Rectangle([-2, 2], [-2, 2])
        self.halfAnnulus = AnnulusSector(0, [0.5, 3], [-pi / 2, pi / 2])
        self.Annulus = Annulus(0, [1, 2])
Exemplo n.º 7
0
def test_annular_combustion():
    from numpy import exp
    from cxroots import Rectangle

    A = -0.19435
    B = 1000.41
    C = 522463
    T = 0.005

    f = lambda z: z**2 + A * z + B * exp(-T * z) + C
    df = lambda z: 2 * z + A - B * T * exp(-T * z)

    rectangle = Rectangle([-15000, 5000], [-15000, 15000])

    import warnings
    warnings.filterwarnings('error')
    roots = rectangle.roots(f, df, verbose=True, rootErrTol=1e-6)
    assert len(roots.roots) == 24
Exemplo n.º 8
0
    def setUp(self):
        # Ex 1.4.2 from [KB] with a rectangular initial contour
        self.C = Rectangle([-2, 2], [-2, 2])
        self.f = lambda z: exp(3 * z) + 2 * z * cos(z) - 1
        self.df = lambda z: 3 * exp(3 * z) + 2 * cos(z) - 2 * z * sin(z)

        self.roots = [
            0, -1.844233953262213, 0.5308949302929305 + 1.33179187675112098j,
            0.5308949302929305 - 1.33179187675112098j
        ]
        self.multiplicities = [1, 1, 1, 1]
Exemplo n.º 9
0
    def setUp(self):
        # Ex 1.4.5 from [KB] with a rectangular initial contour
        self.C = Rectangle([-1, 11], [-1, 1])
        self.f = lambda z: np.prod([z - k for k in range(1, 11)], axis=0)
        self.df = lambda z: np.sum([
            np.prod([z - k for k in range(1, 11) if k != m], axis=0)
            for m in range(1, 11)
        ],
                                   axis=0)

        self.roots = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        self.multiplicities = np.ones(10)
Exemplo n.º 10
0
    def setUp(self):
        # Ex 1.5.2 from [KB]
        self.C = Rectangle([-0.5, 5.5], [-0.5, 1.5])
        self.f = lambda z: z**2 * (z - 1) * (z - 2) * (z - 3) * (z - 4
                                                                 ) + z * sin(z)
        self.df = lambda z: 2 * z * (3 * z**4 - 25 * z**3 + 70 * z**2 - 75 * z
                                     + 24) + sin(z) + z * cos(z)

        self.roots = [
            0, 1.18906588973011365517521756, 1.72843498616506284043592924,
            3.01990732809571222812005354, 4.03038191606046844562845941
        ]
        self.multiplicities = [2, 1, 1, 1, 1]
Exemplo n.º 11
0
    def setUp(self):
        # Ex 1.5.3 from [KB]
        self.C = Rectangle([-1, 3], [-1, 1])
        self.f = lambda z: (z * (z - 2))**2 * (exp(2 * z) * cos(z) + z**3 - 1 -
                                               sin(z))
        self.df = lambda z: 2 * z * (z - 2)**2 * (exp(2 * z) * cos(
            z) + z**3 - 1 - sin(z)) + 2 * z**2 * (z - 2) * (exp(2 * z) * cos(
                z) + z**3 - 1 - sin(z)) + (z * (z - 2))**2 * (2 * exp(
                    2 * z) * cos(z) - exp(2 * z) * sin(z) + 3 * z**2 - cos(z))

        self.roots = [
            0, 2, 1.66468286974551654134568653,
            -0.4607141197289707542294459477 - 0.6254277693477682516688207854j,
            -0.4607141197289707542294459477 + 0.6254277693477682516688207854j
        ]
        self.multiplicities = [3, 2, 1, 1, 1]
Exemplo n.º 12
0
from numpy import pi

from cxroots import Circle, Annulus, AnnulusSector, Rectangle

# make the contours for the tutorial
Circle(0, 2).show('circle.png')
Rectangle([-2,2],[-1,1]).show('rectangle.png')
Annulus(0, [1,2]).show('annulus.png')
AnnulusSector(0, [1,2], [0,pi]).show('annulussefig.png')
Exemplo n.º 13
0
                 id='cluster_10^-3'),
    pytest.param([3, 3.0001, 3.0002, 8, 8.0002, 8 + 0.0001j],
                 [1, 1, 1, 1, 1, 1],
                 id='cluster_10^-4',
                 marks=pytest.mark.slow),
    pytest.param([3, 3.00001, 3.00002, 8, 8.00002, 8 + 0.00001j],
                 [1, 1, 1, 1, 1, 1],
                 id='cluster_10^-5',
                 marks=[
                     pytest.mark.slow,
                     pytest.mark.xfail(reason='Cluster of roots too tight')
                 ])
]

contours = [
    pytest.param(Rectangle([2, 9], [-1, 1]), id='rect'),
    pytest.param(Circle(0, 8.5), id='circle')
]


@pytest.mark.parametrize('C', contours)
@pytest.mark.parametrize('roots,multiplicities', funcs)
def test_rootfinding_df(C, roots, multiplicities):
    f = lambda z: np.prod([z - r for r in roots], axis=0)
    df = lambda z: np.sum([
        np.prod([z - r for r in np.delete(roots, i)], axis=0)
        for i in range(len(roots))
    ],
                          axis=0)
    roots_approx_equal(C.roots(f, df, verbose=True), (roots, multiplicities))
Exemplo n.º 14
0
import pytest
import numpy as np
from scipy import cos, sin

from cxroots import Circle, Rectangle
from cxroots import CxDerivative


@pytest.mark.parametrize('C', [
    pytest.param(Circle(0, 2), id='circle'),
    pytest.param(Rectangle([-1.5, 1.5], [-2, 2]), id='rect'),
    pytest.param(None, id='default')
])
def test_CxDerivative(C):
    f = lambda z: z**10 - 2 * z**5 + sin(z) * cos(z / 2)
    df = lambda z: 10 * (z**9 - z**4) + cos(z) * cos(z / 2) - 0.5 * sin(
        z) * sin(z / 2)

    z = np.array([-1.234, 0.3 + 1j, 0.1j, -0.9 - 0.5j])

    assert CxDerivative(f, z, n=1, contour=C) == pytest.approx(df(z))
Exemplo n.º 15
0
from cxroots import Rectangle
rect = Rectangle(xRange=(-2, 2), yRange=(-1, 1))
rect.show()
Exemplo n.º 16
0
class TestRootfindingContours(unittest.TestCase):
    def setUp(self):
        self.roots = roots = [0, -1.234, 1 + 1j, 1 - 1j, 2.345]
        self.multiplicities = [1, 1, 1, 1, 1]
        self.f = lambda z: (z - roots[0]) * (z - roots[1]) * (z - roots[2]) * (
            z - roots[3]) * (z - roots[4])
        self.df = lambda z: (z - roots[1]) * (z - roots[2]) * (z - roots[
            3]) * (z - roots[4]) + (z - roots[0]) * (z - roots[2]) * (
                z - roots[3]) * (z - roots[4]) + (z - roots[0]) * (z - roots[
                    1]) * (z - roots[3]) * (z - roots[4]) + (z - roots[0]) * (
                        z - roots[1]) * (z - roots[2]) * (z - roots[4]) + (
                            z - roots[0]) * (z - roots[1]) * (z - roots[2]) * (
                                z - roots[3])

        self.Circle = Circle(0, 3)
        self.Rectangle = Rectangle([-2, 2], [-2, 2])
        self.halfAnnulus = AnnulusSector(0, [0.5, 3], [-pi / 2, pi / 2])
        self.Annulus = Annulus(0, [1, 2])

    def test_rootfinding_circle_fdf(self):
        roots_approx_equal(self.Circle.roots(self.f, self.df, verbose=True),
                           (self.roots, self.multiplicities),
                           decimal=7)

    def test_rootfinding_circle_f(self):
        roots_approx_equal(self.Circle.roots(self.f, self.df, verbose=True),
                           (self.roots, self.multiplicities),
                           decimal=7)

    def test_rootfinding_rectangle_fdf(self):
        roots_approx_equal(self.Rectangle.roots(self.f, self.df, verbose=True),
                           (self.roots[:-1], self.multiplicities[:-1]),
                           decimal=7)

    def test_rootfinding_rectangle_f(self):
        roots_approx_equal(self.Rectangle.roots(self.f, self.df, verbose=True),
                           (self.roots[:-1], self.multiplicities[:-1]),
                           decimal=7)

    def test_rootfinding_halfAnnulus_fdf(self):
        roots_approx_equal(self.halfAnnulus.roots(self.f,
                                                  self.df,
                                                  verbose=True),
                           (self.roots[2:], self.multiplicities[2:]),
                           decimal=7)

    def test_rootfinding_halfAnnulus_f(self):
        roots_approx_equal(self.halfAnnulus.roots(self.f,
                                                  self.df,
                                                  verbose=True),
                           (self.roots[2:], self.multiplicities[2:]),
                           decimal=7)

    def test_rootfinding_Annulus_fdf(self):
        roots_approx_equal(self.Annulus.roots(self.f, self.df, verbose=True),
                           (self.roots[1:-1], self.multiplicities[1:-1]),
                           decimal=7)

    def test_rootfinding_Annulus_f(self):
        roots_approx_equal(self.Annulus.roots(self.f, self.df, verbose=True),
                           (self.roots[1:-1], self.multiplicities[1:-1]),
                           decimal=7)
Exemplo n.º 17
0
def test_rect_contains():
    C = Rectangle([-2355, -1860], [-8810, -8616])

    assert C.contains(-2258 - 8694j)
    assert not C.contains(-2258 - 8500j)
Exemplo n.º 18
0
from cxroots import Rectangle
rect = Rectangle([0,2], [0,1])
rect.show()
Exemplo n.º 19
0
from numpy import exp
from cxroots import Rectangle

A = -0.19435
B = 1000.41
C = 522463
T = 0.005

f = lambda z: z**2 + A * z + B * exp(-T * z) + C
df = lambda z: 2 * z + A - B * T * exp(-T * z)

rectangle = Rectangle([-15000, 5000], [-15000, 15000])
roots = rectangle.roots(f, df, rootErrTol=1e-6)
roots.show()
Exemplo n.º 20
0
from cxroots import Rectangle
C = Rectangle([-1.5, 1.5], [-1.5, 1.5])
f = lambda z: z**26 - 2 * z**10 + 0.5 * z**6 - 1
df = lambda z: 26 * z**25 - 20 * z**9 + 3 * z**5
C.demo_roots(f,
             df,
             guessRootSymmetry=lambda z: [z.conjugate(), -z],
             saveFile='ex_rootSymmetry.gif',
             writer='imagemagick')