Exemplo n.º 1
0
class Sink(Facility):
    """This sink facility accepts specified amount of commodity."""
    in_commods = ts.VectorString(
        doc="commodities that the sink facility accepts.",
        tooltip="input commodities for the sink",
        uilabel="List of Input Commodities",
        uitype=["oneormore", "incommodity"],
    )
    recipe = ts.String(
        tooltip="input/request recipe name",
        doc="Name of recipe to request. If empty, sink requests material no "
        "particular composition.",
        default="",
        uilabel="Input Recipe",
        uitype="recipe",
    )
    max_inv_size = ts.Double(
        default=1e299,
        doc="total maximum inventory size of sink facility",
        uilabel="Maximum Inventory",
        tooltip="sink maximum inventory size",
    )
    capacity = ts.Double(
        doc="capacity the sink facility can accept at each time step",
        uilabel="Maximum Throughput",
        tooltip="sink capacity",
        default=100.0,
    )
    inventory = ts.ResourceBuffInv(capacity='max_inv_size')

    def get_material_requests(self):
        if len(self.recipe) == 0:
            comp = {}
        else:
            comp = self.context.get_recipe(self.recipe)
        mat = ts.Material.create_untracked(self.capacity, comp)
        port = {
            "commodities": {c: mat
                            for c in self.in_commods},
            "constraints": self.capacity
        }
        return port

    def get_product_requests(self):
        prod = ts.Product.create_untracked(self.capacity, "")
        port = {
            "commodities": {c: prod
                            for c in self.in_commods},
            "constraints": self.capacity
        }
        return port

    def accept_material_trades(self, responses):
        for mat in responses.values():
            self.inventory.push(mat)

    def accept_product_trades(self, responses):
        for prod in responses.values():
            self.inventory.push(prod)
Exemplo n.º 2
0
class TimeSeriesInst(Institution):
    """
    This institution deploys facilities based on demand curves using
    time series methods.
    """

    commodities = ts.VectorString(
        doc="A list of commodities that the institution will manage. " +
        "commodity_prototype_capacity format" +
        " where the commoditity is what the facility supplies",
        tooltip="List of commodities in the institution.",
        uilabel="Commodities",
        uitype="oneOrMore")

    demand_eq = ts.String(
        doc=
        "This is the string for the demand equation of the driving commodity. "
        + "The equation should use `t' as the dependent variable",
        tooltip="Demand equation for driving commodity",
        uilabel="Demand Equation")

    calc_method = ts.String(
        doc=
        "This is the calculated method used to determine the supply and demand "
        +
        "for the commodities of this institution. Currently this can be ma for "
        + "moving average, or arma for autoregressive moving average.",
        tooltip="Calculation method used to predict supply/demand",
        uilabel="Calculation Method")

    record = ts.Bool(
        doc=
        "Indicates whether or not the institution should record it's output to text "
        +
        "file outputs. The output files match the name of the demand commodity of the "
        + "institution.",
        tooltip=
        "Boolean to indicate whether or not to record output to text file.",
        uilabel="Record to Text",
        default=False)

    driving_commod = ts.String(
        doc="Sets the driving commodity for the institution. That is the " +
        "commodity that no_inst will deploy against the demand equation.",
        tooltip="Driving Commodity",
        uilabel="Driving Commodity",
        default="POWER")

    steps = ts.Int(
        doc="The number of timesteps forward to predict supply and demand",
        tooltip="The number of predicted steps forward",
        uilabel="Timesteps for Prediction",
        default=1)

    back_steps = ts.Int(
        doc="This is the number of steps backwards from the current time step"
        + "that will be used to make the prediction. If this is set to '0'" +
        "then the calculation will use all values in the time series.",
        tooltip="",
        uilabel="Back Steps",
        default=10)

    supply_std_dev = ts.Double(
        doc="The standard deviation adjustment for the supple side.",
        tooltip="The standard deviation adjustment for the supple side.",
        uilabel="Supply Std Dev",
        default=0)

    demand_std_dev = ts.Double(
        doc="The standard deviation adjustment for the demand side.",
        tooltip="The standard deviation adjustment for the demand side.",
        uilabel="Demand Std Dev",
        default=0)

    demand_std_dev = ts.Double(
        doc="The standard deviation adjustment for the demand side.",
        tooltip="The standard deviation adjustment for the demand side.",
        uilabel="Demand Std Dev",
        default=0)

    degree = ts.Int(
        doc="The degree of the fitting polynomial.",
        tooltip="The degree of the fitting polynomial, if using calc methods" +
        " poly, fft, holtz-winter and exponential smoothing." +
        " Additionally, degree is used to as the 'period' input to " +
        "the stepwise_seasonal method.",
        uilabel="Degree Polynomial Fit / Period for stepwise_seasonal",
        default=1)

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.commodity_supply = {}
        self.commodity_demand = {}
        self.rev_commodity_supply = {}
        self.rev_commodity_demand = {}
        self.fresh = True
        CALC_METHODS['ma'] = no.predict_ma
        CALC_METHODS['arma'] = no.predict_arma
        CALC_METHODS['arch'] = no.predict_arch
        CALC_METHODS['poly'] = do.polyfit_regression
        CALC_METHODS['exp_smoothing'] = do.exp_smoothing
        CALC_METHODS['holt_winters'] = do.holt_winters
        CALC_METHODS['fft'] = do.fft
        CALC_METHODS['sw_seasonal'] = ml.stepwise_seasonal

    def print_variables(self):
        print('commodities: %s' % self.commodity_dict)
        print('demand_eq: %s' % self.demand_eq)
        print('calc_method: %s' % self.calc_method)
        print('record: %s' % str(self.record))
        print('steps: %i' % self.steps)
        print('back_steps: %i' % self.back_steps)
        print('supply_std_dev: %f' % self.supply_std_dev)
        print('demand_std_dev: %f' % self.demand_std_dev)

    def parse_commodities(self, commodities):
        """ This function parses the vector of strings commodity variable
            and replaces the variable as a dictionary. This function should be deleted
            after the map connection is fixed."""
        temp = commodities
        commodity_dict = {}

        for entry in temp:
            # commodity, prototype, capacity, preference, constraint_commod, constraint
            z = entry.split('_')
            if len(z) < 3:
                raise ValueError(
                    'Input is malformed: need at least commodity_prototype_capacity'
                )
            else:
                # append zero for all other values if not defined
                while len(z) < 6:
                    z.append(0)
            if z[0] not in commodity_dict.keys():
                commodity_dict[z[0]] = {}
                commodity_dict[z[0]].update({
                    z[1]: {
                        'cap': float(z[2]),
                        'pref': str(z[3]),
                        'constraint_commod': str(z[4]),
                        'constraint': float(z[5])
                    }
                })

            else:
                commodity_dict[z[0]].update({
                    z[1]: {
                        'cap': float(z[2]),
                        'pref': str(z[3]),
                        'constraint_commod': str(z[4]),
                        'constraint': float(z[5])
                    }
                })
        return commodity_dict

    def enter_notify(self):
        super().enter_notify()
        if self.fresh:
            # convert list of strings to dictionary
            self.commodity_dict = self.parse_commodities(self.commodities)
            commod_list = list(self.commodity_dict.keys())
            for key, val in self.commodity_dict.items():
                for key2, val2 in val.items():
                    if val2['constraint_commod'] != '0':
                        commod_list.append(val2['constraint_commod'])
            commod_list = list(set(commod_list))
            for commod in commod_list:
                lib.TIME_SERIES_LISTENERS["supply" + commod].append(
                    self.extract_supply)
                lib.TIME_SERIES_LISTENERS["demand" + commod].append(
                    self.extract_demand)
                self.commodity_supply[commod] = defaultdict(float)
                self.commodity_demand[commod] = defaultdict(float)
            self.fresh = False

    def decision(self):
        """
        This is the tock method for decision the institution. Here the institution determines the difference
        in supply and demand and makes the the decision to deploy facilities or not.
        """
        time = self.context.time
        for commod, proto_dict in self.commodity_dict.items():

            diff, supply, demand = self.calc_diff(commod, time)
            lib.record_time_series('calc_supply' + commod, self, supply)
            lib.record_time_series('calc_demand' + commod, self, demand)

            if diff < 0:
                deploy_dict = solver.deploy_solver(self.commodity_supply,
                                                   self.commodity_dict, commod,
                                                   diff, time)
                for proto, num in deploy_dict.items():
                    for i in range(num):
                        self.context.schedule_build(self, proto)
            if self.record:
                out_text = "Time " + str(time) + \
                    " Deployed " + str(len(self.children))
                out_text += " supply " + \
                    str(self.commodity_supply[commod][time])
                out_text += " demand " + \
                    str(self.commodity_demand[commod][time]) + "\n"
                with open(commod + ".txt", 'a') as f:
                    f.write(out_text)

    def calc_diff(self, commod, time):
        """
        This function calculates the different in supply and demand for a given facility
        Parameters
        ----------
        time : int
            This is the time step that the difference is being calculated for.
        Returns
        -------
        diff : double
            This is the difference between supply and demand at [time]
        supply : double
            The calculated supply of the supply commodity at [time].
        demand : double
            The calculated demand of the demand commodity at [time]
        """
        if time not in self.commodity_demand[commod]:
            t = 0
            self.commodity_demand[commod][time] = eval(self.demand_eq)
        if time not in self.commodity_supply[commod]:
            self.commodity_supply[commod][time] = 0.0
        supply = self.predict_supply(commod)
        demand = self.predict_demand(commod, time)
        diff = supply - demand
        return diff, supply, demand

    def predict_supply(self, commod):
        if self.calc_method in ['arma', 'ma', 'arch']:
            supply = CALC_METHODS[self.calc_method](
                self.commodity_supply[commod],
                steps=self.steps,
                std_dev=self.supply_std_dev,
                back_steps=self.back_steps)
        elif self.calc_method in [
                'poly', 'exp_smoothing', 'holt_winters', 'fft'
        ]:
            supply = CALC_METHODS[self.calc_method](
                self.commodity_supply[commod],
                back_steps=self.back_steps,
                degree=self.degree)
        elif self.calc_method in ['sw_seasonal']:
            supply = CALC_METHODS[self.calc_method](
                self.commodity_supply[commod], period=self.degree)
        else:
            raise ValueError(
                'The input calc_method is not valid. Check again.')
        return supply

    def predict_demand(self, commod, time):
        if commod == self.driving_commod:
            demand = self.demand_calc(time + 1)
            self.commodity_demand[commod][time + 1] = demand
        else:
            if self.calc_method in ['arma', 'ma', 'arch']:
                demand = CALC_METHODS[self.calc_method](
                    self.commodity_demand[commod],
                    steps=self.steps,
                    std_dev=self.supply_std_dev,
                    back_steps=self.back_steps)
            elif self.calc_method in [
                    'poly', 'exp_smoothing', 'holt_winters', 'fft'
            ]:
                demand = CALC_METHODS[self.calc_method](
                    self.commodity_demand[commod],
                    back_steps=self.back_steps,
                    degree=self.degree)
            elif self.calc_method in ['sw_seasonal']:
                demand = CALC_METHODS[self.calc_method](
                    self.commodity_demand[commod], period=self.degree)
            else:
                raise ValueError(
                    'The input calc_method is not valid. Check again.')
        return demand

    def extract_supply(self, agent, time, value, commod):
        """
        Gather information on the available supply of a commodity over the
        lifetime of the simulation.
        Parameters
        ----------
        agent : cyclus agent
            This is the agent that is making the call to the listener.
        time : int
            Timestep that the call is made.
        value : object
            This is the value of the object being recorded in the time
            series.
        """
        commod = commod[6:]
        self.commodity_supply[commod][time] += value
        # update commodities
        # self.commodity_dict[commod] = {agent.prototype: value}

    def extract_demand(self, agent, time, value, commod):
        """
        Gather information on the demand of a commodity over the
        lifetime of the simulation.
        Parameters
        ----------
        agent : cyclus agent
            This is the agent that is making the call to the listener.
        time : int
            Timestep that the call is made.
        value : object
            This is the value of the object being recorded in the time
            series.
        """
        commod = commod[6:]
        self.commodity_demand[commod][time] += value

    def demand_calc(self, time):
        """
        Calculate the electrical demand at a given timestep (time).
        Parameters
        ----------
        time : int
            The timestep that the demand will be calculated at.
        Returns
        -------
        demand : The calculated demand at a given timestep.
        """
        t = time
        demand = eval(self.demand_eq)
        return demand
Exemplo n.º 3
0
class NOInst(Institution):
    """
    This institution deploys facilities based on demand curves using 
    Non Optimizing (NO) methods. 
    """

    prototypes = ts.VectorString(
        doc="A list of prototypes that the institution will draw upon to fit" +
        "the demand curve",
        tooltip="List of prototypes the institution can use to meet demand",
        uilabel="Prototypes",
        uitype="oneOrMore")

    growth_rate = ts.Double(
        doc="This value represents the growth rate that the institution is " +
        "attempting to meet.",
        tooltip="Growth rate of growth commodity",
        uilabel="Growth Rate",
        default="0.02")

    supply_commod = ts.String(
        doc=
        "The commodity this institution will be monitoring for supply growth.",
        tooltip="Supply commodity",
        uilabel="Supply Commodity")

    demand_commod = ts.String(
        doc=
        "The commodity this institution will be monitoring for demand growth.",
        tooltip="Growth commodity",
        uilabel="Growth Commodity")

    initial_demand = ts.Double(doc="The initial power of the facility",
                               tooltip="Initital demand",
                               uilabel="Initial demand")

    calc_method = ts.String(
        doc=
        "This is the calculated method used to determine the supply and demand "
        +
        "for the commodities of this institution. Currently this can be ma for "
        + "moving average, or arma for autoregressive moving average.",
        tooltip="Calculation method used to predict supply/demand",
        uilabel="Calculation Method")

    record = ts.Bool(
        doc=
        "Indicates whether or not the institution should record it's output to text "
        +
        "file outputs. The output files match the name of the demand commodity of the "
        + "institution.",
        tooltip=
        "Boolean to indicate whether or not to record output to text file.",
        uilabel="Record to Text",
        default=False)

    supply_std_dev = ts.Double(
        doc="The number of standard deviations off mean for ARMA predictions",
        tooltip="Std Dev off mean for ARMA",
        uilabel="Supple Std Dev",
        default=0.)

    demand_std_dev = ts.Double(
        doc="The number of standard deviations off mean for ARMA predictions",
        tooltip="Std Dev off mean for ARMA",
        uilabel="Demand Std Dev",
        default=0.)

    steps = ts.Int(
        doc="The number of timesteps forward for ARMA or order of the MA",
        tooltip="Std Dev off mean for ARMA",
        uilabel="Demand Std Dev",
        default=1)
    back_steps = ts.Int(
        doc="This is the number of steps backwards from the current time step"
        + "that will be used to make the prediction. If this is set to '0'" +
        "then the calculation will use all values in the time series.",
        tooltip="",
        uilabel="",
        default="5")

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.commodity_supply = defaultdict(float)
        self.commodity_demand = defaultdict(float)
        self.fac_supply = {}
        CALC_METHODS['ma'] = self.moving_avg
        CALC_METHODS['arma'] = self.predict_arma
        CALC_METHODS['arch'] = self.predict_arch

    def enter_notify(self):
        super().enter_notify()
        lib.TIME_SERIES_LISTENERS[self.supply_commod].append(
            self.extract_supply)
        lib.TIME_SERIES_LISTENERS[self.demand_commod].append(
            self.extract_demand)

    def tock(self):
        """
        This is the tock method for the institution. Here the institution determines the difference
        in supply and demand and makes the the decision to deploy facilities or not.     
        """
        time = self.context.time
        diff, supply, demand = self.calc_diff(time)
        if diff < 0:
            proto = random.choice(self.prototypes)
            prod_rate = self.commodity_supply[time] / len(self.children)
            number = np.ceil(-1 * diff / prod_rate)
            i = 0
            while i < number:
                self.context.schedule_build(self, proto)
                i += 1
        if self.record:
            with open(self.demand_commod + ".txt", 'a') as f:
                f.write("Time " + str(time) + " Deployed " +
                        str(len(self.children)) + " supply " +
                        str(self.commodity_supply[time]) + " demand " +
                        str(self.commodity_demand[time]) + "\n")

    def calc_diff(self, time):
        """
        This function calculates the different in supply and demand for a given facility
        Parameters
        ----------        
        time : int
            This is the time step that the difference is being calculated for.
        Returns
        -------
        diff : double
            This is the difference between supply and demand at [time]
        supply : double
            The calculated supply of the supply commodity at [time].
        demand : double
            The calculated demand of the demand commodity at [time]
        """
        try:
            supply = CALC_METHODS[self.calc_method](
                self.commodity_supply,
                steps=self.steps,
                std_dev=self.supply_std_dev)
        except (ValueError, np.linalg.linalg.LinAlgError):
            supply = CALC_METHODS['ma'](self.commodity_supply)
        if not self.commodity_demand:
            self.commodity_demand[time] = self.initial_demand
        if self.demand_commod == 'power':
            demand = self.demand_calc(time + 1)
            self.commodity_demand[time] = demand
        try:
            demand = CALC_METHODS[self.calc_method](
                self.commodity_demand,
                steps=self.steps,
                std_dev=self.demand_std_dev)
        except (np.linalg.linalg.LinAlgError, ValueError):
            demand = CALC_METHODS['ma'](self.commodity_demand)
        diff = supply - demand
        return diff, supply, demand

    def extract_supply(self, agent, time, value):
        """
        Gather information on the available supply of a commodity over the
        lifetime of the simulation. 

        Parameters
        ----------
        agent : cyclus agent
            This is the agent that is making the call to the listener.
        time : int
            Timestep that the call is made.
        value : object
            This is the value of the object being recorded in the time
            series.
        """
        self.commodity_supply[time] += value

    def extract_demand(self, agent, time, value):
        """
        Gather information on the demand of a commodity over the
        lifetime of the simulation.
        
        Parameters
        ----------
        agent : cyclus agent
            This is the agent that is making the call to the listener.
        time : int
            Timestep that the call is made.
        value : object
            This is the value of the object being recorded in the time
            series.
        """
        self.commodity_demand[time] += value

    def demand_calc(self, time):
        """
        Calculate the electrical demand at a given timestep (time). 
        
        Parameters
        ----------
        time : int
            The timestep that the demand will be calculated at. 
        Returns
        -------
        demand : The calculated demand at a given timestep.
        """
        timestep = self.context.dt
        time = time * timestep
        demand = self.initial_demand * (
            (1.0 + self.growth_rate)**(time / 3.154e+7))
        return demand

    def moving_avg(self, ts, steps=1, std_dev=0, back_steps=5):
        """
        Calculates the moving average of a previous [order] entries in
        timeseries [ts]. It will automatically reduce the order if the
        length of ts is shorter than the order. 

        Parameters:
        -----------
        ts : Array of doubles
            An array of time series data to be used for the arma prediction
        order : int
            The number of values used for the moving average. 
        Returns
        -------
        x : The moving average calculated by the function.         
        """
        supply = np.array(list(ts.values()))
        if steps >= len(supply):
            steps = len(supply) * -1
        else:
            steps *= -1
        x = np.average(supply[steps:])
        return x

    def predict_arma(self, ts, steps=1, std_dev=0, back_steps=5):
        """
        Predict the value of supply or demand at a given time step using the 
        currently available time series data. This method impliments an ARMA
        calculation to perform the prediciton. 

        Parameters:
        -----------
        ts : Array of doubles
            An array of time series data to be used for the arma prediction
        time: int
            The number of timesteps to predict forward. 
        Returns:
        --------
        x : Predicted value for the time series at chosen timestep (time). 
        """
        v = list(ts.values())
        fit = sm.tsa.ARMA(v, (1, 0)).fit(disp=-1)
        forecast = fit.forecast(steps)
        x = fit[0][steps - 1] + fit[1][steps - 1] * std_dev
        return x

    def predict_arch(self, ts, steps=1, std_dev=0, back_steps=5):
        """
        Predict the value of supply or demand at a given time step using the 
        currently available time series data. This method impliments an ARCH
        calculation to perform the prediciton. 
        """
        f_obs = len(ts) - back_steps
        if f_obs < 0 or back_steps == 0: f_obs = 0
        model = arch_model(ts)
        fit = model.fit(disp='nothing',
                        update_freq=0,
                        show_warning=False,
                        first_obs=f_obs)
        forecast = fit.forecast(horizon=steps)
        x = forecast.mean.get('h.1')[len(ts) - 1]
        std_dev = math.sqrt(
            forecast.variance.get('h.1')[len(ts) - 1]) * std_dev
        return x + std_dev
Exemplo n.º 4
0
class ann_lwr(Facility):
    fuel_incommod = ts.String(
        doc="The commodity name for incoming fuel",
        tooltip="Incoming fuel",
        uilabel="Incoming fuel"
    )

    fuel_outcommod = ts.String(
        doc="The commodity name for discharge fuel",
        tooltip="Discharge Fuel",
        uilabel="Discharge Fuel"
    )

    pickle_path = ts.String(
        doc="Path to the pickle file",
        tooltip="Absolute path to the pickle file"
    )

    # one row would be 2.1_30000 3.1_40000 4.1_50000 etc
    enr_bu_matrix = ts.VectorString(
        doc="enrichment and burnup matrix",
        tooltip="enrichment_burnup column separated by space"
    )

    n_assem_core = ts.Int(
        doc="Number of assemblies",
        tooltip="Number of assemblies in core"
    )

    n_assem_batch = ts.Int(
        doc="Number of assemblies per batch",
        tooltip="Number of assemblies per batch"
    )

    assem_size = ts.Double(
        doc="Assembly mass",
        tooltip="Assembly mass"
    )

    power_cap = ts.Double(
        doc="Power capacity of reactor",
        tooltip="Power capacity of reactor",
    )

    cycle_time_eq = ts.String(
        doc="cycle time of reactor equation",
        tooltip="Cycle time of reactor equation"
    )

    refuel_time_eq = ts.String(
        doc="Refuel time of reactor equation",
        tooltip="Refuel time of reactor equation"
    )

    core = ts.ResBufMaterialInv()
    waste = ts.ResBufMaterialInv()


    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def enter_notify(self):
        super().enter_notify()
        self.model_dict = pickle.load(open(self.pickle_path, 'rb'))
        # change other to h-1
        other_index = self.model_dict['iso_list'].index('other')
        self.model_dict['iso_list'][other_index] = 'h-1'
        self.iso_list = self.model_dict['iso_list']

        # check if it's integer batches
        if (self.n_assem_core / self.n_assem_batch)%1 != 0:
            raise ValueError('Sorry can only do integer batches')

        # input consistency checking
        self.enr_matrix, self.bu_matrix = self.check_enr_bu_matrix()

        # !!
        self.f = open('f.txt', 'w')
        # set initial cycle and refuel time
        t = self.context.time
        self.cycle_time = max(0, int(eval(self.cycle_time_eq)))
        self.refuel_time = max(0, int(eval(self.refuel_time_eq)))

        # set core capacity
        self.core.capacity = self.n_assem_core * self.assem_size

        self.cycle_step = 0
        self.batch_gen = 0
        self.n_batch = int(self.n_assem_core / self.n_assem_batch)
        # if no exit time, exit time is 1e5
        if self.exit_time == -1:
            self.decom_time = 1e5
        else:
            self.decom_time = self.exit_time

    def tick(self):
        # If time to decommission, where if decommissioning
        # mid cycle, deplete using weighted average
        # and discharge
        if self.context.time == self.decom_time:
            # burnup is prorated by the ratio
            cycle_step_ratio = self.cycle_step / self.cycle_time
            for index, bu_list in enumerate(self.bu_matrix):
                prorated_bu_list = bu_list * cycle_step_ratio
                self.transmute_and_discharge(prorated_bu_list,
                                             self.enr_matrix[index])
            return

        if self.cycle_step == self.cycle_time:
            if self.batch_gen < self.n_batch:
                i = self.batch_gen
            else:
                i = -1
            bu_list = self.bu_matrix[i]
            self.transmute_and_discharge(bu_list,
                                         self.enr_matrix[i])
            self.batch_gen += 1


    def tock(self):
        if (self.cycle_step >= self.cycle_time + self.refuel_time) and (self.is_core_full()):
            t = self.context.time
            self.cycle_time = max(0, int(eval(self.cycle_time_eq)))
            self.refuel_time = max(0, int(eval(self.refuel_time_eq)))
            self.cycle_step = 1

        # produce power if core is full
        if (self.cycle_step >= 0) and (self.cycle_step < self.cycle_time) and (self.is_core_full()):
            self.produce_power(True)
        else:
            self.produce_power(False)

        if self.cycle_step > 0 or self.is_core_full():
            self.cycle_step += 1


    def get_material_bids(self, requests):
        """ Gets material bids that want its 'outcommod' and
            returns bid portfolio
        """
        bids = []
        if self.fuel_outcommod in requests.keys():
            reqs = requests[self.fuel_outcommod]
            for req in reqs:
                if self.waste.empty():
                    break
                qty = min(req.target.quantity, self.waste.quantity
                        )
                next_in_line = self.waste.peek()
                mat = ts.Material.create_untracked(qty, next_in_line.comp())
                bids.append({'request': req, 'offer': mat})
        if len(bids) == 0:
            return
        port = {'bids': bids}
        return port

    def get_material_trades(self, trades):
        """ Give out fuel_outcommod from waste buffer"""
        responses = {}
        for trade in trades:
            commodity = trade.request.commodity
            if commodity == self.fuel_outcommod:
                mat_list = self.waste.pop_n(self.waste.count)
            if len(mat_list) > 1:
                for mat in mat_list[1:]:
                    mat_list[0].absorb(mat)
            responses[trade] = mat_list[0]
        return responses

    def get_material_requests(self):
        """ Ask for fuel_incommod"""
        ports = []
        if self.context.time == self.decom_time:
            return []
        if self.is_core_full():
            return []

        recipes = {}
        qty = {}
        mat = {}
        t = self.context.time
        # initial core loading
        if self.batch_gen == 0:
            enr_to_request = self.enr_matrix
            for i in range(np.shape(enr_to_request)[0]):
                for j in range(np.shape(enr_to_request)[1]):
                    enr = eval(enr_to_request[i,j])
                    comp = {'u-238': 100-enr,
                            'u-235': enr}
                    qty = self.assem_size
                    mat = ts.Material.create_untracked(qty, comp)

                    ports.append({'commodities': {self.fuel_incommod: mat},
                                  'constraints': qty})
        # subsequent equilibrium batch loading
        else:
            enr_to_request = self.enr_matrix[-1]
            for enrichment in enr_to_request:
                enr = eval(enrichment)
                comp = {'u-238': 100-enr,
                        'u-235': enr}
                qty = self.assem_size
                mat = ts.Material.create_untracked(qty, comp)
                ports.append({'commodities' : {self.fuel_incommod: mat},
                              'constraints': qty})

        return ports


    def accept_material_trades(self, responses):
        """ Get fuel_incommod and store it into core"""
        for key, mat in responses.items():
            if key.request.commodity == self.fuel_incommod:
                self.core.push(mat)


    def is_core_full(self):
        if self.core.count == self.n_assem_core:
            return True
        else:
            return False


    def predict(self, enr_bu):
        model = self.model_dict['model']
        x = self.model_dict['xscaler'].transform(enr_bu)
        y = self.model_dict['yscaler'].inverse_transform(
                model.predict(x))[0]
        comp_dict = {}
        for indx, iso in enumerate(self.iso_list):
            # zero if model predicts negative
            if y[indx] < 0:
                y[indx] = 0
            comp_dict[iso] = y[indx]
        return comp_dict


    def transmute_and_discharge(self, bu_list, enr_list):
        # this should ideally be one batch,
        t = self.context.time
        if self.batch_gen < self.n_batch:
           enr = enr_list[self.batch_gen]
        else:
            enr = enr_list[-1]
        for indx, bu in enumerate(bu_list):
            enr_bu = [[eval(enr_list[indx]),eval(bu)]]
            print('Transmuting fuel with enrichment, burnup:')
            print(enr_bu)
            discharge_fuel = self.core.pop()
            comp = self.predict(enr_bu)
            discharge_fuel.transmute(comp)
            self.waste.push(discharge_fuel)


    def produce_power(self, produce=True):
        if produce:
            lib.record_time_series(lib.POWER, self, float(self.power_cap))
        else:
            lib.record_time_series(lib.POWER, self, 0)


    def check_enr_bu_matrix(self):
        # parse bu enr matrix
        empty = np.zeros(len(self.enr_bu_matrix[0].split(' ')))

        for i in self.enr_bu_matrix:
            entry = np.array(i.split(' '))
            if len(entry) != self.n_assem_batch:
                raise ValueError('The length of entry has to match n_assem_batch')
            try:
                empty = np.vstack((empty, entry))
            except ValueError:
                print('Your length of entries per batch are inconsistent!')
        matrix = empty[1:]

        # separate bu and enrichment
        sep = np.char.split(matrix, '_')
        bu_matrix = np.empty(np.shape(matrix), dtype=object)
        enr_matrix = np.empty(np.shape(matrix), dtype=object)
        for i in range(np.shape(sep)[0]):
            for j in range(np.shape(sep)[1]):
                enr_matrix[i,j] = sep[i,j][0]
                bu_matrix[i,j] = sep[i,j][1]

        return enr_matrix, bu_matrix
Exemplo n.º 5
0
class NOInst(Institution):
    """
    This institution deploys facilities based on demand curves using
    Non Optimizing (NO) methods.
    """

    prototypes = ts.VectorString(
        doc="A list of prototypes that the institution will draw upon to fit" +
        "the demand curve",
        tooltip="List of prototypes the institution can use to meet demand",
        uilabel="Prototypes",
        uitype="oneOrMore")

    growth_rate = ts.Double(
        doc="This value represents the growth rate that the institution is " +
        "attempting to meet.",
        tooltip="Growth rate of growth commodity",
        uilabel="Growth Rate")

    growth_commod = ts.String(
        doc=
        "The commodity this institution will be monitoring for demand growth. "
        + "The default value of this field is electric power.",
        tooltip="Growth commodity",
        uilabel="Growth Commodity")

    initial_demand = ts.Double(doc="The initial power of the facility",
                               tooltip="Initital demand",
                               uilabel="Initial demand")

    #The supply of a commodity
    commodity_supply = {}

    def tick(self):
        """
        #Method for the deployment of facilities.
        """
        if self.growth_commod not in lib.TIME_SERIES_LISTENERS:
            lib.TIME_SERIES_LISTENERS[self.growth_commod].append(
                self.extract_supply)
        time = self.context.time
        if time is 0:
            return
        print(self.commodity_supply[time - 1], self.demand_calc(time))
        if self.commodity_supply[time - 1] < self.demand_calc(time):
            proto = random.choice(self.prototypes)
            print("New fac: " + proto)
            print(self.kind)
            self.context.schedule_build(self, proto)

    def extract_supply(self, agent, time, value):
        """
        Gather information on the available supply of a commodity over the
        lifetime of the simulation.
        """
        if time in self.commodity_supply:
            self.commodity_supply[time] += value
        else:
            self.commodity_supply[time] = value

    def demand_calc(self, time):
        """
        Calculate the electrical demand at a given timestep (time).
        Parameters
        ----------
        time : int
            The timestep that the demand will be calculated at.
        """
        timestep = self.context.dt / 86400 / 28
        demand = self.initial_demand * (
            (1.0 + self.growth_rate)**(time / timestep))
        return demand
Exemplo n.º 6
0
class DeterministicInst(Institution):
    """
    This institution deploys facilities based on demand curves using
    time series methods.
    """

    demand_eq = ts.String(
        doc="This is the string for the demand equation of the driving commodity. " +
        "The equation should use `t' as the dependent variable",
        tooltip="Demand equation for driving commodity",
        uilabel="Demand Equation"
    )

    prototypes = ts.VectorString(
        doc="A list of the prototypes controlled by the institution.",
        tooltip="List of prototypes in the institution.",
        uilabel="Prototypes",
        uitype="oneOrMore"
    )

    fac_rates = ts.VectorString(
        doc="This is the string for the demand equation of the driving commodity. " +
        "The equation should use `t' as the dependent variable",
        tooltip="Demand equation for driving commodity",
        uitype="oneOrMore",
        uilabel="Demand Equation"
    )


    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.commods = {}
        self.construct = []
        self.demand = [0]
        
    def enter_notify(self):
        super().enter_notify() 
        for proto in self.prototypes:
            self.construct.append(0)

    def decision(self):
        self.commods, matrix = self.construct_matrix()
        t = self.context.time
        self.demand.append(self.demand_calc(t+1))
        demand = self.demand[-1] - self.demand[-2]
        results = [0]*len(self.prototypes)
        results[0] = demand
        solve = []
        for proto in self.prototypes:
            solve.append(matrix[proto])
        out = np.linalg.solve(solve, results)
        print(out)
        print(self.construct)
        for i in range(len(out)):
            self.construct[i] += out[i]
        print(self.construct)
        for i in range(len(self.construct)):
            j = 0
            while j < self.construct[i]:
                self.context.schedule_build(self, self.prototypes[i])
                self.construct[i] -= 1
                j+=1       

    def construct_matrix(self):
        matrix = {}
        commodities = {}
        for i in range(len(self.prototypes)):
            proto = self.prototypes[i]
            matrix[proto] = np.array(self.fac_rates[i].split(",")).astype(float)
        return commodities, matrix
    '''    
    def extract_supply(self, agent, time, value, commod):
        """
        Gather information on the available supply of a commodity over the
        lifetime of the simulation.
        Parameters
        ----------
        agent : cyclus agent
            This is the agent that is making the call to the listener.
        time : int
            Timestep that the call is made.
        value : object
            This is the value of the object being recorded in the time
            series.
        """
        commod = commod[6:]
        self.commodity_supply[commod][time] += value
        # update commodities
        # self.commodity_dict[commod] = {agent.prototype: value}

    def extract_demand(self, agent, time, value, commod):
        """
        Gather information on the demand of a commodity over the
        lifetime of the simulation.
        Parameters
        ----------
        agent : cyclus agent
            This is the agent that is making the call to the listener.
        time : int
            Timestep that the call is made.
        value : object
            This is the value of the object being recorded in the time
            series.
        """
        commod = commod[6:]
        self.commodity_demand[commod][time] += value
    '''
    def demand_calc(self, time):
        """
        Calculate the electrical demand at a given timestep (time).
        Parameters
        ----------
        time : int
            The timestep that the demand will be calculated at.
        Returns
        -------
        demand : The calculated demand at a given timestep.
        """
        t = time
        demand = eval(self.demand_eq)
        return demand