Exemplo n.º 1
0
def get_config(config_path):
    """Load experiment configuration

    Args:
        config_path: Either a path to a configuration file or a directory containing a
            configuration file with the default name (controlled by CYTOKIT_CONFIG_DEFAULT_FILENAME)
    Returns:
        Configuration object
    """
    # Load experiment configuration and "register" the environment meaning that any variables not
    # explicitly defined by env variables should set based on what is present in the configuration
    # (it is crucial that this happen first)
    config = cytokit_config.load(config_path)
    config.register_environment()
    return config
Exemplo n.º 2
0
 def _get_example_conf(self):
     conf_dir = osp.join(cytokit.conf_dir, 'v0.1', 'examples', 'ex1')
     return cytokit_config.load(conf_dir)
Exemplo n.º 3
0
 def _get_example_conf(self, file_type='yaml'):
     cytokit.set_config_default_filename('experiment.' + file_type)
     conf_dir = osp.join(cytokit.conf_dir, 'v0.1', 'examples', 'ex1')
     return cytokit_config.load(conf_dir)
Exemplo n.º 4
0
def get_example_config(example_name='ex1'):
    path = osp.join(cytokit.test_data_dir, 'configs', 'v0.1', 'examples', example_name)
    return cytokit_config.load(path)
Exemplo n.º 5
0
    def test_pipeline_01(self):
        out_dir = tempfile.mkdtemp(prefix='cytokit_test_pipeline_01_')
        print('Initialized output dir {} for pipeline test 01'.format(out_dir))

        raw_dir = osp.join(cytokit.test_data_dir, 'experiment',
                           'cellular-marker-small', 'raw')
        val_dir = osp.join(cytokit.test_data_dir, 'experiment',
                           'cellular-marker-small', 'validation')
        config_dir = osp.join(cytokit.test_data_dir, 'experiment',
                              'cellular-marker-small', 'config')
        config = ck_config.load(config_dir)

        # Run processor and extractions/aggregations
        processor.Processor(data_dir=raw_dir,
                            config_path=config_dir).run_all(output_dir=out_dir)
        operator.Operator(data_dir=out_dir, config_path=config_dir).run_all()
        analysis.Analysis(data_dir=out_dir, config_path=config_dir).run_all()

        # ##################### #
        # Processor Data Checks #
        # ##################### #
        df = ck_fn.get_processor_data(out_dir)['drift_compensator']
        # Expect one drift comp record since there are two cycles and one is the reference
        self.assertEqual(len(df), 1)
        # Expecting 12 row and -3 col translation introduced in synthetic data
        self.assertEqual(df.iloc[0]['translation'], [12, -3])

        df = ck_fn.get_processor_data(out_dir)['focal_plane_selector']
        # Expect one focal selection record (there is only 1 tile in experiment and these
        # records are per-tile)
        self.assertEqual(len(df), 1)
        # Expecting second of 3 z planes to have the best focus (data was generated this way)
        self.assertEqual(df.iloc[0]['best_z'], 1)

        # ##################### #
        # Cytometry Stats Check #
        # ##################### #
        df = ck_fn.get_cytometry_data(out_dir, config, mode='best_z_plane')

        # Verify that the overall cell count and size found are in the expected ranges
        self.assertTrue(
            20 <= len(df) <= 25,
            'Expecting between 20 and 25 cells, found {} instead'.format(
                len(df)))
        nuc_diam, cell_diam = df['nucleus_diameter'].mean(
        ), df['cell_diameter'].mean()
        self.assertTrue(
            4 < nuc_diam < 6,
            'Expecting mean nucleus diameter in [4, 6] um, found {} instead'.
            format(nuc_diam))
        self.assertTrue(
            8 < cell_diam < 10,
            'Expecting mean cell diameter in [8, 10] um, found {} instead'.
            format(cell_diam))

        # The drift align dapi channels should be nearly identical across cycles, but in this case there are border
        # cells that end up with dapi=0 for cval=0 in drift compensation translation function so make the check
        # on a threshold (the ratio is < .5 with no drift compensation)
        dapi_ratio = df['ni:DAPI2'].mean() / df['ni:DAPI1'].mean()
        self.assertTrue(
            .8 < dapi_ratio <= 1,
            'Expecting cycle 2 DAPI averages to be similar to cycle 1 DAPI after drift compensation, '
            'found ratio {} (not in (.8, 1])'.format(dapi_ratio))

        # Check that all records are for single z plane (with known best focus)
        self.assertEqual(df['z'].nunique(), 1)
        self.assertEqual(int(df['z'].unique()[0]), 1)

        # Verify that single cell image generation works
        df = ck_fn.get_single_cell_image_data(out_dir,
                                              df,
                                              'best_z_segm',
                                              image_size=(64, 64))
        self.assertEqual(df['image'].iloc[0].shape, (64, 64, 3))
        self.assertTrue(df['image'].notnull().all())

        # ################## #
        # Segmentation Check #
        # ################## #
        # Load extract with object masks
        img, meta = ck_io.read_tile(osp.join(
            out_dir,
            ck_io.get_extract_image_path(ireg=0,
                                         tx=0,
                                         ty=0,
                                         name='best_z_segm')),
                                    return_metadata=True)
        # Ensure that the 8 channels set for extraction showed up in the resulting hyperstack
        self.assertEqual(len(meta['labels']), 8)

        # Verify that IoU for both nuclei and cell masks vs ground-truth is > 80%
        img_seg_cell = img[0, 0, meta['labels'].index('cyto_cell_mask')]
        img_seg_nucl = img[0, 0, meta['labels'].index('cyto_nucleus_mask')]
        img_val_cell = sk_io.imread(osp.join(val_dir, 'cells.tif'))
        img_val_nucl = sk_io.imread(osp.join(val_dir, 'nuclei.tif'))

        def iou(im1, im2):
            return ((im1 > 0) & (im2 > 0)).sum() / ((im1 > 0) |
                                                    (im2 > 0)).sum()

        self.assertGreater(iou(img_seg_cell, img_val_cell), .8)
        self.assertGreater(iou(img_seg_nucl, img_val_nucl), .8)

        # ############# #
        # Montage Check #
        # ############# #
        # Load montage and check that it has the same dimensions as the extract image above,
        # since there is only one tile in this case
        img_mntg = ck_io.read_tile(
            osp.join(out_dir,
                     ck_io.get_montage_image_path(ireg=0, name='best_z_segm')))
        self.assertEqual(img.shape, img_mntg.shape)
        self.assertEqual(img.dtype, img_mntg.dtype)
Exemplo n.º 6
0
    def test_quantification(self):
        """Validate quantification of objects in the "Random Shapes" test dataset"""

        exp_dir = osp.join(cytokit.test_data_dir, 'experiment',
                           'random-shapes')
        config_path = osp.join(exp_dir, 'config', 'experiment.yaml')
        config = ck_config.load(config_path)
        config.register_environment()

        # Pull shape of grid (i.e. region)
        region_shape = config.region_height, config.region_width

        #########################
        # Load tiles and original
        #########################

        # Load each tile for the experiment
        tiles = [
            tile_generator.CytokitTileGenerator(config,
                                                osp.join(exp_dir, 'raw'),
                                                region_index=0,
                                                tile_index=i).run()
            for i in range(config.n_tiles_per_region)
        ]
        self.assertEqual(
            tiles[0].ndim, 5,
            'Expecting 5D tiles, got shape {}'.format(tiles[0].shape))

        # Load original image used to create individual tile images (i.e. at region scale) and compare
        # to a montage generated from the tiles just loaded
        img_mtv = ck_io.read_image(
            osp.join(exp_dir, 'validation', 'original_shapes_image.tif'))
        # Create montage from first channel (which contains object ids for reference)
        img_mtg = ck_core.montage(tiles, config)[0, 0, 0]
        assert_array_equal(img_mtg, img_mtv)

        # Classify objects as either free or on border
        # * First create a stacked image containing cleared tiles
        img_clr = np.stack(
            [segmentation.clear_border(t[0, 0, 0]) for t in tiles])
        # Split ids into 2 groups based on the cleared stack image
        ids = np.unique(img_mtg[img_mtg > 0])
        ids_free = np.setdiff1d(np.unique(img_clr), [0])
        ids_brdr = np.setdiff1d(ids, ids_free)
        # Check that the background id is not included in any of the above
        self.assertTrue(
            np.all(ids_free > 0) and np.all(ids_brdr > 0) and np.all(ids > 0))

        ####################
        # Run quantification
        ####################

        def create_segments(im):
            # Create segmentation images as (z, ch, h, w)
            imb = segmentation.find_boundaries(im, mode='inner')
            segments = np.stack([im, im, imb, imb])[np.newaxis]
            assert segments.ndim == 4
            return segments

        # Quantify each tile image and concatenate results
        df = pd.concat([
            cytometer.CytometerBase.quantify(
                tiles[i],
                create_segments(tiles[i][0, 0, 0]),
                channel_names=config.channel_names,
                cell_intensity=['mean', 'median', 'sum', 'var'],
                nucleus_intensity=False,
                cell_graph=True,
                border_features=True,
                morphology_features=True).assign(tile_x=c,
                                                 tile_y=r,
                                                 tile_index=i)
            for i, (r, c) in enumerate(np.ndindex(region_shape))
        ])

        #########################
        # Validate quantification
        #########################

        # Ensure that all objects in original image are also present in cytometry data
        self.assertTrue(
            len(np.intersect1d(ids, df['id'].unique())) == len(ids),
            'Object ids expected do not match those found\nIds found: {}\nIds expected: {}'
            .format(sorted(df['id'].unique()), sorted(ids)))

        # Check that objects classified as on border or not are correct
        assert_array_equal(sorted(df[df['cb:on_border'] > 0]['id'].unique()),
                           sorted(ids_brdr))
        assert_array_equal(sorted(df[df['cb:on_border'] < 1]['id'].unique()),
                           sorted(ids_free))

        # Loop through objects identified and validate each one
        for i, r in df.iterrows():
            # Fetch tile image from tile list and make sure that size of cell returned matches that in image
            area = (tiles[r['tile_index']][0, 0, 0] == r['id']).sum()
            self.assertEquals(r['cm:size'], area)

            # For each channel validate that:
            # - mean and median equal the id times channel index (1-based)
            # - sum equals area times id times channel index
            # - variance is 0
            for j, c in enumerate(config.channel_names):
                for f in ['mean', 'median']:
                    self.assertEquals(r['id'] * (j + 1),
                                      r['ci:{}:{}'.format(c, f)])
                self.assertEquals(r['id'] * (j + 1) * area,
                                  r['ci:{}:sum'.format(c)])
                self.assertEquals(0, r['ci:{}:var'.format(c)])
Exemplo n.º 7
0
 def __init__(self):
     self._exp_config = cytokit_config.load(self.exp_config_path)
     self._exp_config.register_environment()
Exemplo n.º 8
0
 def exp_config(self):
     if not self._exp_config:
         self._exp_config = cytokit_config.load(self.exp_config_path)
     return self._exp_config