def train():
    num_epochs, lr, batch_size = 5, 0.5, 256
    loss = gloss.SoftmaxCrossEntropyLoss()
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
                  params, lr)
Exemplo n.º 2
0
def train_resnet_18():
    net = residual_network()
    net.initialize(force_reinit=True, init=init.Xavier())

    lr, batch_size, ctx, epoch_num = 0.05, 256, mxnet.cpu(), 5
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size,
                                                        resize=96)
    d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
                  epoch_num)
Exemplo n.º 3
0
def train_small_vgg():
    ratio = 4
    small_vgg_11 = [(pair[0], pair[1] // ratio) for pair in vgg_11]
    net = vgg(small_vgg_11)
    lr, num_epochs, batch_size, ctx = 0.01, 20, 256, mx.cpu()
    net.initialize()
    # mx.gluon 训练器中,定义需要更新的参数 net.collect_params(), 更新算法 sgd, 以及学习率 lr
    trainer = mx.gluon.Trainer(net.collect_params(), 'sgd',
                               {'learning_rate': lr})
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
    d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
                  num_epochs)
Exemplo n.º 4
0
'''
    conv0 output shape: 	 (1, 6, 24, 24)
    pool0 output shape: 	 (1, 6, 12, 12)
    conv1 output shape: 	 (1, 16, 8, 8)
    pool1 output shape: 	 (1, 16, 4, 4)
    dense0 output shape: 	 (1, 120)
    dense1 output shape: 	 (1, 84)
    dense2 output shape: 	 (1, 10)
    Process finished with exit code 0
'''

# 5.5.2

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)


def try_gpu():
    try:
        ctx = mx.gpu()
        _ = nd.zeros((1, ), ctx=ctx)
    except mx.base.MXNetError:
        ctx = mx.cpu()
    return ctx


ctx = try_gpu()


def evaluate_accuracy(data_iter, net, ctx):
Exemplo n.º 5
0
def train():
    num_epochs, lr, batch_size = 5, 0.5, 256
    loss = gloss.SoftmaxCrossEntropyLoss()
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
                  params, lr)