Exemplo n.º 1
0
                   zderiv,
                   p1,
                   p2,
                   title='zderiv',
                   savefig=False,
                   interp=interp,
                   Xaxis=x_axis)

    #%%
    # Ridges identification: plot all extremas obtained via find_peaks function (numpy) for a given altitude
    dEXP.ridges_minmax_plot(xp,
                            yp,
                            mesh,
                            p1,
                            p2,
                            label=label_prop,
                            method_peak='find_peaks',
                            showfig=True,
                            interp=True,
                            smooth=True,
                            Xaxis=x_axis)

    #%%
    # Ridges identification at all levels: plot extremas obtained via find_peaks function (numpy) for all 3 types of extremas familly RI, RII and RIII
    D = dEXP.ridges_minmax(xp,
                           yp,
                           mesh,
                           p1,
                           p2,
                           label=label_prop,
                           method_peak='find_peaks',
Exemplo n.º 2
0
pEXP.plot_line(xp, yp, U,p1,p2, interp=interp)

#%% ------- upward continuation of the field data

mesh, label_prop = dEXP.upwc(xp, yp, zp, U, shape, 
                 zmin=0, zmax=max_elevation, nlayers=nlay, 
                 qorder=qorder)

plt, cmap = pEXP.plot_xy(mesh, label=label_prop)
plt.colorbar(cmap)
        

# %% ridges identification

dEXP.ridges_minmax_plot(xp, yp, mesh, p1, p2,
                                      label=label_prop,
                                      method_peak='find_peaks')  

# or  find_peaks or peakdet or spline_roots
dfI,dfII, dfIII = dEXP.ridges_minmax(xp, yp, mesh, p1, p2,
                                      label=label_prop,
                                      method_peak='find_peaks')  

 
#%% ------------------------------- plot ridges over continuated section
    
fig = plt.figure()
ax = plt.gca()
pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=)
pEXP.plot_ridges_harmonic(dfI,dfII,dfIII,ax=ax)
    # plt, cmap = pEXP.plot_xy(mesh, label=label_prop, Xaxis='y', p1p2=np.array([p1, p2])) #, ldg=)
    # plt.colorbar(cmap)

    # plt, cmap = pEXP.plot_xy(mesh, label=label_prop, Xaxis='y', p1p2=p) #, ldg=)
    # plt.colorbar(cmap)

    # plt, cmap = pEXP.slice_mesh(xp, yp, mesh, label_prop, p1, p2, interp=True, Xaxis='x')
    # plt.colorbar(cmap)

    #%%
    # Ridges identification: plot all extremas obtained via find_peaks function (numpy) for a given altitude
    dEXP.ridges_minmax_plot(xp,
                            yp,
                            mesh,
                            p1,
                            p2,
                            label=label_prop,
                            method_peak='find_peaks',
                            showfig=True,
                            Xaxis=x_axis,
                            qorder=qorder)

    #%%
    # Ridges identification at all levels: plot extremas obtained via find_peaks function (numpy) for all 3 types of extremas familly RI, RII and RIII
    D = dEXP.ridges_minmax(xp,
                           yp,
                           mesh,
                           p1,
                           p2,
                           label=label_prop,
                           method_peak='find_peaks',
                           fix_peak_nb=3,
Exemplo n.º 4
0
    if x_axis == 'y':
        square([xA_r_new[0], xA_r_new[1], -z1, -z2])
    else:
        square([yA_r[0], yA_r[1], -z1, -z2])
    plt.xlim([200, 600])
    plt.savefig('ratios_' + str(file) + '.png', dpi=450)

    # %% ridges identification

    dEXP.ridges_minmax_plot(Xs,
                            Ys,
                            mesh,
                            p1_s,
                            p2_s,
                            label=label_prop,
                            interp=interp,
                            x_resolution=interp_size,
                            smooth=smooth,
                            fix_peak_nb=2,
                            method_peak='find_peaks',
                            showfig=True,
                            Xaxis=x_axis)
    #%%
    # or  find_peaks or peakdet or spline_roots
    # dfI,dfII, dfIII = dEXP.ridges_minmax(Xs, Ys, mesh, p1_s, p2_s,interp=interp,x_resolution= interp_size,
    #                                       label=label_prop,fix_peak_nb=2,
    #                                       smooth=smooth, # true = low pass, otherwise specify the filter to apply
    #                                       method_peak='find_peaks',
    #                                       showfig=True,
    #                                       Xaxis=x_axis)
Exemplo n.º 5
0
# pEXP.plot_xy(mesh, label=label_prop, Xaxis='x') #, ldg=)
pEXP.plot_xy(mesh, label=label_prop, Xaxis=x_axis, p1p2=p)  #, ldg=)

# p1p2 = np.array([1,1,1,1])

# plt, cmap = pEXP.slice_mesh(xp, yp, mesh, label_prop, p1, p2, interp=True, Xaxis='y')
# plt.colorbar(cmap)

# %% ridges identification

dEXP.ridges_minmax_plot(xp,
                        yp,
                        mesh,
                        p1,
                        p2,
                        label=label_prop,
                        fix_peak_nb=nb_of_peak,
                        interp=interp,
                        smooth=smooth,
                        method_peak='find_peaks',
                        showfig=True,
                        Xaxis=x_axis)

# or  find_peaks or peakdet or spline_roots
# dfI,dfII, dfIII = dEXP.ridges_minmax(xp, yp, mesh, p1, p2,interp=interp,
#                                       label=label_prop,fix_peak_nb=nb_of_peak,
#                                       smooth=smooth,
#                                       method_peak='find_peaks',
#                                       showfig=True,
#                                       Xaxis=x_axis)

D = dEXP.ridges_minmax(xp,