Exemplo n.º 1
0
    def test_tiled_program(self):
        # Tasklet only
        sdfg, state = create_tiled_sdfg()
        tasklet = next(n for n in state.nodes() if isinstance(n, Tasklet))
        nest_state_subgraph(sdfg, state, SubgraphView(state, [tasklet]))
        sdfg.validate()

        # Inner map scope
        sdfg, state = create_tiled_sdfg()
        tasklet = next(n for n in state.nodes() if isinstance(n, Tasklet))
        entry = state.entry_node(tasklet)
        nest_state_subgraph(sdfg, state, state.scope_subgraph(entry))
        sdfg.validate()

        # Outer map scope
        sdfg, state = create_tiled_sdfg()
        sdc = state.scope_dict(True)
        entry = next(n for n in sdc[None] if isinstance(n, MapEntry))
        nest_state_subgraph(sdfg, state, state.scope_subgraph(entry))
        sdfg.validate()

        # Entire state
        sdfg, state = create_tiled_sdfg()
        nest_state_subgraph(sdfg, state, SubgraphView(state, state.nodes()))
        sdfg.validate()
Exemplo n.º 2
0
    def test_badscope(self):
        with self.assertRaises(ValueError):
            sdfg, state, t, me, mx = create_sdfg()
            nest_state_subgraph(sdfg, state, SubgraphView(state, [t, me]))

        with self.assertRaises(ValueError):
            sdfg, state, t, me, mx = create_sdfg()
            nest_state_subgraph(sdfg, state, SubgraphView(state, [t, mx]))

        with self.assertRaises(KeyError):
            sdfg, state, t, me, mx = create_sdfg()
            b_node = state.sink_nodes()[0]
            sdfg, state, t, me, mx = create_sdfg()
            # Notice that b_node comes from another graph
            nest_state_subgraph(sdfg, state, SubgraphView(state, [t, b_node]))
Exemplo n.º 3
0
    def apply(self, sdfg):
        graph = sdfg.nodes()[self.state_id]
        if self.expr_index == 0:
            map_entry = graph.nodes()[self.subgraph[
                GPUTransformMap._map_entry]]
            nsdfg_node = helpers.nest_state_subgraph(
                sdfg,
                graph,
                graph.scope_subgraph(map_entry),
                full_data=self.fullcopy)
        else:
            cnode = graph.nodes()[self.subgraph[GPUTransformMap._reduce]]
            nsdfg_node = helpers.nest_state_subgraph(
                sdfg,
                graph,
                SubgraphView(graph, [cnode]),
                full_data=self.fullcopy)

        # Avoiding import loops
        from dace.transformation.interstate import GPUTransformSDFG
        transformation = GPUTransformSDFG(0, 0, {}, 0)
        transformation.register_trans = self.register_trans
        transformation.sequential_innermaps = self.sequential_innermaps
        transformation.toplevel_trans = self.toplevel_trans

        transformation.apply(nsdfg_node.sdfg)

        # Inline back as necessary
        sdfg.apply_strict_transformations()
Exemplo n.º 4
0
 def get_actions(actions, graph, match):
     subgraph_node_ids = match.subgraph.values()
     subgraph_nodes = [graph.nodes()[nid] for nid in subgraph_node_ids]
     for node in subgraph_nodes:
         version = 0
         while (node, type(match).__name__, match.expr_index,
                version) in actions.keys():
             version += 1
         actions[(node, type(match).__name__, match.expr_index,
                  version)] = match
     subgraph = SubgraphView(graph, subgraph_nodes)
     for edge in subgraph.edges():
         version = 0
         while (edge, type(match).__name__, match.expr_index,
                version) in actions.keys():
             version += 1
         actions[(edge, type(match).__name__, match.expr_index,
                  version)] = match
     return actions
Exemplo n.º 5
0
    def has_surrounding_perfcounters(node, dfg: SubgraphView):
        """ Returns true if there is a possibility that this node is part of a
            section that is profiled. """
        parent = dfg.scope_dict()[node]

        if isinstance(parent, MapEntry):
            if (parent.map.schedule
                    not in PAPIInstrumentation.perf_whitelist_schedules):
                return False
            return True

        return False
Exemplo n.º 6
0
    def test_simple_program(self):
        @dace.program
        def multiply(a: dace.float32[N]):
            a *= 2

        sdfg = multiply.to_sdfg(strict=True)
        for state in sdfg.nodes():
            if any(isinstance(node, Tasklet) for node in state.nodes()):
                break
        else:
            raise KeyError('State with tasklet not found')

        tasklet_nodes = [n for n in state.nodes() if isinstance(n, Tasklet)]
        with self.assertRaises(ValueError):
            nest_state_subgraph(sdfg, state,
                                SubgraphView(state, tasklet_nodes))

        nest_state_subgraph(sdfg, state, SubgraphView(state,
                                                      [tasklet_nodes[0]]))
        sdfg.validate()
        nest_state_subgraph(sdfg, state, SubgraphView(state,
                                                      [tasklet_nodes[1]]))
        sdfg.validate()
Exemplo n.º 7
0
def nest_state_subgraph(sdfg: SDFG,
                        state: SDFGState,
                        subgraph: SubgraphView,
                        name: Optional[str] = None,
                        full_data: bool = False) -> nodes.NestedSDFG:
    """ Turns a state subgraph into a nested SDFG. Operates in-place.
        :param sdfg: The SDFG containing the state subgraph.
        :param state: The state containing the subgraph.
        :param subgraph: Subgraph to nest.
        :param name: An optional name for the nested SDFG.
        :param full_data: If True, nests entire input/output data.
        :return: The nested SDFG node.
        :raise KeyError: Some or all nodes in the subgraph are not located in
                         this state, or the state does not belong to the given
                         SDFG.
        :raise ValueError: The subgraph is contained in more than one scope.
    """
    if state.parent != sdfg:
        raise KeyError('State does not belong to given SDFG')
    if subgraph.graph != state:
        raise KeyError('Subgraph does not belong to given state')

    # Find the top-level scope
    scope_tree = state.scope_tree()
    scope_dict = state.scope_dict()
    scope_dict_children = state.scope_dict(True)
    top_scopenode = -1  # Initialized to -1 since "None" already means top-level

    for node in subgraph.nodes():
        if node not in scope_dict:
            raise KeyError('Node not found in state')

        # If scope entry/exit, ensure entire scope is in subgraph
        if isinstance(node, nodes.EntryNode):
            scope_nodes = scope_dict_children[node]
            if any(n not in subgraph.nodes() for n in scope_nodes):
                raise ValueError('Subgraph contains partial scopes (entry)')
        elif isinstance(node, nodes.ExitNode):
            entry = state.entry_node(node)
            scope_nodes = scope_dict_children[entry] + [entry]
            if any(n not in subgraph.nodes() for n in scope_nodes):
                raise ValueError('Subgraph contains partial scopes (exit)')

        scope_node = scope_dict[node]
        if scope_node not in subgraph.nodes():
            if top_scopenode != -1 and top_scopenode != scope_node:
                raise ValueError(
                    'Subgraph is contained in more than one scope')
            top_scopenode = scope_node

    scope = scope_tree[top_scopenode]
    ###

    # Collect inputs and outputs of the nested SDFG
    inputs: List[MultiConnectorEdge] = []
    outputs: List[MultiConnectorEdge] = []
    for node in subgraph.source_nodes():
        inputs.extend(state.in_edges(node))
    for node in subgraph.sink_nodes():
        outputs.extend(state.out_edges(node))

    # Collect transients not used outside of subgraph (will be removed of
    # top-level graph)
    data_in_subgraph = set(n.data for n in subgraph.nodes()
                           if isinstance(n, nodes.AccessNode))
    # Find other occurrences in SDFG
    other_nodes = set(
        n.data for s in sdfg.nodes() for n in s.nodes()
        if isinstance(n, nodes.AccessNode) and n not in subgraph.nodes())
    subgraph_transients = set()
    for data in data_in_subgraph:
        datadesc = sdfg.arrays[data]
        if datadesc.transient and data not in other_nodes:
            subgraph_transients.add(data)

    # All transients of edges between code nodes are also added to nested graph
    for edge in subgraph.edges():
        if (isinstance(edge.src, nodes.CodeNode)
                and isinstance(edge.dst, nodes.CodeNode)):
            subgraph_transients.add(edge.data.data)

    # Collect data used in access nodes within subgraph (will be referenced in
    # full upon nesting)
    input_arrays = set()
    output_arrays = set()
    for node in subgraph.nodes():
        if (isinstance(node, nodes.AccessNode)
                and node.data not in subgraph_transients):
            if state.out_degree(node) > 0:
                input_arrays.add(node.data)
            if state.in_degree(node) > 0:
                output_arrays.add(node.data)

    # Create the nested SDFG
    nsdfg = SDFG(name or 'nested_' + state.label)

    # Transients are added to the nested graph as-is
    for name in subgraph_transients:
        nsdfg.add_datadesc(name, sdfg.arrays[name])

    # Input/output data that are not source/sink nodes are added to the graph
    # as non-transients
    for name in (input_arrays | output_arrays):
        datadesc = copy.deepcopy(sdfg.arrays[name])
        datadesc.transient = False
        nsdfg.add_datadesc(name, datadesc)

    # Connected source/sink nodes outside subgraph become global data
    # descriptors in nested SDFG
    input_names = []
    output_names = []
    for edge in inputs:
        if edge.data.data is None:  # Skip edges with an empty memlet
            continue
        name = '__in_' + edge.data.data
        datadesc = copy.deepcopy(sdfg.arrays[edge.data.data])
        datadesc.transient = False
        if not full_data:
            datadesc.shape = edge.data.subset.size()
        input_names.append(
            nsdfg.add_datadesc(name, datadesc, find_new_name=True))
    for edge in outputs:
        if edge.data.data is None:  # Skip edges with an empty memlet
            continue
        name = '__out_' + edge.data.data
        datadesc = copy.deepcopy(sdfg.arrays[edge.data.data])
        datadesc.transient = False
        if not full_data:
            datadesc.shape = edge.data.subset.size()
        output_names.append(
            nsdfg.add_datadesc(name, datadesc, find_new_name=True))
    ###################

    # Add scope symbols to the nested SDFG
    for v in scope.defined_vars:
        if v in sdfg.symbols:
            sym = sdfg.symbols[v]
            nsdfg.add_symbol(v, sym.dtype)

    # Create nested state
    nstate = nsdfg.add_state()

    # Add subgraph nodes and edges to nested state
    nstate.add_nodes_from(subgraph.nodes())
    for e in subgraph.edges():
        nstate.add_edge(e.src, e.src_conn, e.dst, e.dst_conn, e.data)

    # Modify nested SDFG parents in subgraph
    for node in subgraph.nodes():
        if isinstance(node, nodes.NestedSDFG):
            node.sdfg.parent = nstate
            node.sdfg.parent_sdfg = nsdfg

    # Add access nodes and edges as necessary
    edges_to_offset = []
    for name, edge in zip(input_names, inputs):
        node = nstate.add_read(name)
        new_edge = copy.deepcopy(edge.data)
        new_edge.data = name
        edges_to_offset.append((edge,
                                nstate.add_edge(node, None, edge.dst,
                                                edge.dst_conn, new_edge)))
    for name, edge in zip(output_names, outputs):
        node = nstate.add_write(name)
        new_edge = copy.deepcopy(edge.data)
        new_edge.data = name
        edges_to_offset.append((edge,
                                nstate.add_edge(edge.src, edge.src_conn, node,
                                                None, new_edge)))

    # Offset memlet paths inside nested SDFG according to subsets
    for original_edge, new_edge in edges_to_offset:
        for edge in nstate.memlet_tree(new_edge):
            edge.data.data = new_edge.data.data
            if not full_data:
                edge.data.subset.offset(original_edge.data.subset, True)

    # Add nested SDFG node to the input state
    nested_sdfg = state.add_nested_sdfg(nsdfg, None,
                                        set(input_names) | input_arrays,
                                        set(output_names) | output_arrays)

    # Reconnect memlets to nested SDFG
    for name, edge in zip(input_names, inputs):
        if full_data:
            data = Memlet.from_array(edge.data.data,
                                     sdfg.arrays[edge.data.data])
        else:
            data = edge.data
        state.add_edge(edge.src, edge.src_conn, nested_sdfg, name, data)
    for name, edge in zip(output_names, outputs):
        if full_data:
            data = Memlet.from_array(edge.data.data,
                                     sdfg.arrays[edge.data.data])
        else:
            data = edge.data
        state.add_edge(nested_sdfg, name, edge.dst, edge.dst_conn, data)

    # Connect access nodes to internal input/output data as necessary
    entry = scope.entry
    exit = scope.exit
    for name in input_arrays:
        node = state.add_read(name)
        if entry is not None:
            state.add_nedge(entry, node, EmptyMemlet())
        state.add_edge(node, None, nested_sdfg, name,
                       Memlet.from_array(name, sdfg.arrays[name]))
    for name in output_arrays:
        node = state.add_write(name)
        if exit is not None:
            state.add_nedge(node, exit, EmptyMemlet())
        state.add_edge(nested_sdfg, name, node, None,
                       Memlet.from_array(name, sdfg.arrays[name]))

    # Remove subgraph nodes from graph
    state.remove_nodes_from(subgraph.nodes())

    # Remove subgraph transients from top-level graph
    for transient in subgraph_transients:
        del sdfg.arrays[transient]

    return nested_sdfg
Exemplo n.º 8
0
    def apply(self, sdfg):
        state: SDFGState = sdfg.nodes()[self.state_id]
        nsdfg_node = state.nodes()[self.subgraph[InlineSDFG._nested_sdfg]]
        nsdfg: SDFG = nsdfg_node.sdfg
        nstate: SDFGState = nsdfg.nodes()[0]

        nsdfg_scope_entry = state.entry_node(nsdfg_node)
        nsdfg_scope_exit = (state.exit_nodes(nsdfg_scope_entry)[0]
                            if nsdfg_scope_entry is not None else None)

        #######################################################
        # Collect and update top-level SDFG metadata

        # Global/init/exit code
        if nsdfg.global_code:
            sdfg.set_global_code(sdfg.global_code + nsdfg.global_code)
        if nsdfg.init_code:
            sdfg.set_init_code(sdfg.init_code + nsdfg.init_code)
        if nsdfg.exit_code:
            sdfg.set_exit_code(sdfg.exit_code + nsdfg.exit_code)

        # Find original source/destination edges (there is only one edge per
        # connector, according to match)
        inputs: Dict[str, MultiConnectorEdge] = {}
        outputs: Dict[str, MultiConnectorEdge] = {}
        input_set: Dict[str, str] = {}
        output_set: Dict[str, str] = {}
        for e in state.in_edges(nsdfg_node):
            inputs[e.dst_conn] = e
            input_set[e.data.data] = e.dst_conn
        for e in state.out_edges(nsdfg_node):
            outputs[e.src_conn] = e
            output_set[e.data.data] = e.src_conn

        # All transients become transients of the parent (if data already
        # exists, find new name)
        # Mapping from nested transient name to top-level name
        transients: Dict[str, str] = {}
        for node in nstate.nodes():
            if isinstance(node, nodes.AccessNode):
                datadesc = nsdfg.arrays[node.data]
                if node.data not in transients and datadesc.transient:
                    name = sdfg.add_datadesc('%s_%s' %
                                             (nsdfg.label, node.data),
                                             datadesc,
                                             find_new_name=True)
                    transients[node.data] = name

        # All transients of edges between code nodes are also added to parent
        for edge in nstate.edges():
            if (isinstance(edge.src, nodes.CodeNode)
                    and isinstance(edge.dst, nodes.CodeNode)):
                datadesc = nsdfg.arrays[edge.data.data]
                if edge.data.data not in transients and datadesc.transient:
                    name = sdfg.add_datadesc('%s_%s' %
                                             (nsdfg.label, edge.data.data),
                                             datadesc,
                                             find_new_name=True)
                    transients[edge.data.data] = name

        # Collect nodes to add to top-level graph
        new_incoming_edges: Dict[nodes.Node, MultiConnectorEdge] = {}
        new_outgoing_edges: Dict[nodes.Node, MultiConnectorEdge] = {}

        source_accesses = set()
        sink_accesses = set()
        for node in nstate.source_nodes():
            if (isinstance(node, nodes.AccessNode)
                    and node.data not in transients):
                new_incoming_edges[node] = inputs[node.data]
                source_accesses.add(node)
        for node in nstate.sink_nodes():
            if (isinstance(node, nodes.AccessNode)
                    and node.data not in transients):
                new_outgoing_edges[node] = outputs[node.data]
                sink_accesses.add(node)

        #######################################################
        # Add nested SDFG into top-level SDFG

        # Add nested nodes into original state
        subgraph = SubgraphView(nstate, [
            n for n in nstate.nodes()
            if n not in (source_accesses | sink_accesses)
        ])
        state.add_nodes_from(subgraph.nodes())
        for edge in subgraph.edges():
            state.add_edge(edge.src, edge.src_conn, edge.dst, edge.dst_conn,
                           edge.data)

        #######################################################
        # Replace data on inlined SDFG nodes/edges

        # Replace symbols using invocation symbol mapping
        # Two-step replacement (N -> __dacesym_N --> map[N]) to avoid clashes
        for symname, symvalue in nsdfg_node.symbol_mapping.items():
            if str(symname) != str(symvalue):
                nsdfg.replace(symname, '__dacesym_' + symname)
        for symname, symvalue in nsdfg_node.symbol_mapping.items():
            if str(symname) != str(symvalue):
                nsdfg.replace('__dacesym_' + symname, symvalue)

        # Replace data names with their top-level counterparts
        repldict = {}
        repldict.update(transients)
        repldict.update({
            k: v.data.data
            for k, v in itertools.chain(inputs.items(), outputs.items())
        })
        for node in subgraph.nodes():
            if isinstance(node, nodes.AccessNode) and node.data in repldict:
                node.data = repldict[node.data]
        for edge in subgraph.edges():
            if edge.data.data in repldict:
                edge.data.data = repldict[edge.data.data]

        #######################################################
        # Reconnect inlined SDFG

        # If a source/sink node is one of the inputs/outputs, reconnect it,
        # replacing memlets in outgoing/incoming paths
        modified_edges = set()
        modified_edges |= self._modify_memlet_path(new_incoming_edges, nstate,
                                                   state, True)
        modified_edges |= self._modify_memlet_path(new_outgoing_edges, nstate,
                                                   state, False)

        # Modify all other internal edges pertaining to input/output nodes
        for node in subgraph.nodes():
            if isinstance(node, nodes.AccessNode):
                if node.data in input_set or node.data in output_set:
                    if node.data in input_set:
                        outer_edge = inputs[input_set[node.data]]
                    else:
                        outer_edge = outputs[output_set[node.data]]

                    for edge in state.all_edges(node):
                        if (edge not in modified_edges
                                and edge.data.data == node.data):
                            for e in state.memlet_tree(edge):
                                if e.data.data == node.data:
                                    e._data = helpers.unsqueeze_memlet(
                                        e.data, outer_edge.data)

        # If source/sink node is not connected to a source/destination access
        # node, and the nested SDFG is in a scope, connect to scope with empty
        # memlets
        if nsdfg_scope_entry is not None:
            for node in subgraph.nodes():
                if state.in_degree(node) == 0:
                    state.add_edge(nsdfg_scope_entry, None, node, None,
                                   EmptyMemlet())
                if state.out_degree(node) == 0:
                    state.add_edge(node, None, nsdfg_scope_exit, None,
                                   EmptyMemlet())

        # Replace nested SDFG parents with new SDFG
        for node in nstate.nodes():
            if isinstance(node, nodes.NestedSDFG):
                node.sdfg.parent = state
                node.sdfg.parent_sdfg = sdfg

        # Remove all unused external inputs/output memlet paths, as well as
        # resulting isolated nodes
        removed_in_edges = self._remove_edge_path(state,
                                                  inputs,
                                                  set(inputs.keys()) -
                                                  source_accesses,
                                                  reverse=True)
        removed_out_edges = self._remove_edge_path(state,
                                                   outputs,
                                                   set(outputs.keys()) -
                                                   sink_accesses,
                                                   reverse=False)

        # Re-add in/out edges to first/last nodes in subgraph
        order = [
            x for x in nx.topological_sort(nstate._nx)
            if isinstance(x, nodes.AccessNode)
        ]
        for edge in removed_in_edges:
            # Find first access node that refers to this edge
            node = next(n for n in order if n.data == edge.data.data)
            state.add_edge(edge.src, edge.src_conn, node, edge.dst_conn,
                           edge.data)
        for edge in removed_out_edges:
            # Find last access node that refers to this edge
            node = next(n for n in reversed(order) if n.data == edge.data.data)
            state.add_edge(node, edge.src_conn, edge.dst, edge.dst_conn,
                           edge.data)

        #######################################################
        # Remove nested SDFG node
        state.remove_node(nsdfg_node)
Exemplo n.º 9
0
 def test_simple_sdfg_program(self):
     sdfg, state, t, me, mx = create_sdfg()
     nest_state_subgraph(sdfg, state, SubgraphView(state, state.nodes()))
     sdfg.validate()
Exemplo n.º 10
0
 def test_simple_sdfg_map(self):
     sdfg, state, t, me, mx = create_sdfg()
     nest_state_subgraph(sdfg, state, SubgraphView(state, [me, t, mx]))
     sdfg.validate()