Exemplo n.º 1
0
def optimize_for_cpu(sdfg: dace.SDFG, m: int, n: int, k: int):
    """ Optimize the matrix multiplication example for multi-core CPUs. """
    # Ensure integers are 32-bit by default
    dace.Config.set('compiler', 'default_data_types', value='C')

    # Fuse the map and reduce nodes
    sdfg.apply_transformations(MapReduceFusion)

    # Find multiplication map
    entry = find_map_by_param(sdfg, 'k')

    # Create a tiling strategy
    divides_evenly = (m % 32 == 0) and (n % 32 == 0) and (k % 256 == 0)
    xfutil.tile(sdfg, entry, divides_evenly, False, k=256, i=32, j=32)
    xfutil.tile(sdfg, entry, divides_evenly, divides_evenly, j=16, i=4)

    # Reorder internal map to "k,i,j"
    xfutil.permute_map(entry, [2, 0, 1])

    # Add local storage for B in j tile: we apply InLocalStorage with a
    # parameter "array" named B, between the two maps of j and i
    regtile_j = find_map_by_param(sdfg, 'tile1_j')
    regtile_i = find_map_by_param(sdfg, 'tile1_i')
    InLocalStorage.apply_to(sdfg,
                            dict(array='B'),
                            node_a=regtile_j,
                            node_b=regtile_i)

    if divides_evenly:
        # Add local storage for C
        exit_inner = find_mapexit_by_param(sdfg, 'k')
        exit_rti = find_mapexit_by_param(sdfg, 'tile1_i')
        AccumulateTransient.apply_to(sdfg,
                                     dict(array='C', identity=0),
                                     map_exit=exit_inner,
                                     outer_map_exit=exit_rti)

        # Vectorize microkernel map
        postamble = n % 4 != 0
        entry_inner, inner_state = find_map_and_state_by_param(sdfg, 'k')
        Vectorization.apply_to(inner_state.parent,
                               dict(vector_len=4,
                                    preamble=False,
                                    postamble=postamble),
                               _map_entry=entry_inner)

    # Mark outer tile map as sequential to remove atomics
    find_map_by_param(sdfg,
                      'tile_k').map.schedule = dace.ScheduleType.Sequential

    # Collapse maps for more parallelism
    find_map_by_param(sdfg, 'o0').map.collapse = 2
    tile_i = find_map_by_param(sdfg, 'tile_i')
    tile_j = find_map_by_param(sdfg, 'tile_j')
    MapCollapse.apply_to(sdfg,
                         _outer_map_entry=tile_i,
                         _inner_map_entry=tile_j)
    tile_ij = find_map_by_param(sdfg, 'tile_i')  # Find newly created map
    tile_ij.map.schedule = dace.ScheduleType.CPU_Multicore
    tile_ij.map.collapse = 2
Exemplo n.º 2
0
def optimize_for_gpu(sdfg: dace.SDFG, m: int, n: int, k: int):
    """ Optimize the matrix multiplication example for GPUs. """
    # Ensure integers are 32-bit by default
    dace.Config.set('compiler', 'default_data_types', value='C')

    # Fuse the map and reduce nodes
    sdfg.apply_transformations(MapReduceFusion)

    # Apply GPU transformation
    sdfg.apply_gpu_transformations()

    # Find multiplication map
    entry = find_map_by_param(sdfg, 'k')

    # Create a tiling strategy
    divides_evenly = (m % 64 == 0) and (n % 64 == 0) and (k % 8 == 0)
    xfutil.tile(sdfg, entry, divides_evenly, True, i=64, j=64, k=8)
    xfutil.tile(sdfg, entry, divides_evenly, True, i=8, j=4)

    # Create kernel schedule by collapsing and reordering maps
    gtile_i = find_map_by_param(sdfg, 'tile_i')
    gtile_j = find_map_by_param(sdfg, 'tile_j')
    btile_i = find_map_by_param(sdfg, 'tile1_i')
    btile_j = find_map_by_param(sdfg, 'tile1_j')
    MapCollapse.apply_to(sdfg, outer_map_entry=gtile_i, inner_map_entry=gtile_j, permissive=True)
    MapCollapse.apply_to(sdfg, outer_map_entry=btile_i, inner_map_entry=btile_j, permissive=True)
    btile = find_map_by_param(sdfg, 'tile1_i')
    btile.map.schedule = dace.ScheduleType.GPU_ThreadBlock

    # Add local storage (shared memory) for A and B on GPU
    ktile = find_map_by_param(sdfg, 'tile_k')
    smem_a = InLocalStorage.apply_to(sdfg, dict(array='A'), node_a=ktile, node_b=btile)
    smem_b = InLocalStorage.apply_to(sdfg, dict(array='B'), node_a=ktile, node_b=btile)
    sdfg.arrays[smem_a.data].storage = dace.StorageType.GPU_Shared
    sdfg.arrays[smem_b.data].storage = dace.StorageType.GPU_Shared

    # Add local storage (registers) for A and B
    ttile = find_map_by_param(sdfg, 'k')
    warptile, ttile = xfutil.extract_map_dims(sdfg, ttile, [2])
    InLocalStorage.apply_to(sdfg, dict(array='trans_gpu_A'), node_a=warptile, node_b=ttile)
    InLocalStorage.apply_to(sdfg, dict(array='trans_gpu_B'), node_a=warptile, node_b=ttile)

    # Add local storage (registers) for C
    state = next(s for s in sdfg.nodes() if warptile in s.nodes())
    warptile_exit = state.exit_node(warptile)
    btile_exit = state.exit_node(btile)
    AccumulateTransient.apply_to(sdfg, map_exit=warptile_exit, outer_map_exit=btile_exit)
    # Set C tile to zero on allocation
    c_access = next(n for n in state.data_nodes() if n.data == 'trans_gpu_C')
    c_access.setzero = True

    # Unroll microkernel maps
    ttile.map.unroll = True

    # Apply double-buffering on shared memory
    DoubleBuffering.apply_to(sdfg, map_entry=ktile, transient=smem_a)
Exemplo n.º 3
0
    def apply(self, sdfg: SDFG) -> None:
        graph: SDFGState = sdfg.nodes()[self.state_id]

        inner_map_entry: nodes.MapEntry = graph.nodes()[self.subgraph[
            GPUMultiTransformMap._map_entry]]

        number_of_gpus = self.number_of_gpus
        ngpus = Config.get("compiler", "cuda", "max_number_gpus")
        if (number_of_gpus == None):
            number_of_gpus = ngpus
        if number_of_gpus > ngpus:
            raise ValueError(
                'Requesting more gpus than specified in the dace config')

        # Avoiding import loops
        from dace.transformation.dataflow import (StripMining, InLocalStorage,
                                                  OutLocalStorage,
                                                  AccumulateTransient)

        # The user has responsibility for the implementation of a Library node.
        scope_subgraph = graph.scope_subgraph(inner_map_entry)
        for node in scope_subgraph.nodes():
            if isinstance(node, nodes.LibraryNode):
                warnings.warn(
                    'Node %s is a library node, make sure to manually set the '
                    'implementation to a GPU compliant specialization.' % node)

        # Tile map into number_of_gpus tiles
        outer_map: nodes.Map = StripMining.apply_to(
            sdfg,
            dict(dim_idx=-1,
                 new_dim_prefix=self.new_dim_prefix,
                 tile_size=number_of_gpus,
                 tiling_type=dtypes.TilingType.NumberOfTiles),
            _map_entry=inner_map_entry)

        outer_map_entry: nodes.MapEntry = graph.scope_dict()[inner_map_entry]
        inner_map_exit: nodes.MapExit = graph.exit_node(inner_map_entry)
        outer_map_exit: nodes.MapExit = graph.exit_node(outer_map_entry)

        # Change map schedules
        inner_map_entry.map.schedule = dtypes.ScheduleType.GPU_Device
        outer_map.schedule = dtypes.ScheduleType.GPU_Multidevice

        symbolic_gpu_id = outer_map.params[0]

        # Add the parameter of the outer map
        for node in graph.successors(inner_map_entry):
            if isinstance(node, nodes.NestedSDFG):
                map_syms = inner_map_entry.range.free_symbols
                for sym in map_syms:
                    symname = str(sym)
                    if symname not in node.symbol_mapping.keys():
                        node.symbol_mapping[symname] = sym
                        node.sdfg.symbols[symname] = graph.symbols_defined_at(
                            node)[symname]

        # Add transient Data leading to the inner map
        prefix = self.new_transient_prefix
        for node in graph.predecessors(outer_map_entry):
            # Only AccessNodes are relevant
            if (isinstance(node, nodes.AccessNode)
                    and not (self.skip_scalar
                             and isinstance(node.desc(sdfg), Scalar))):
                if self.use_p2p and node.desc(
                        sdfg).storage is dtypes.StorageType.GPU_Global:
                    continue

                in_data_node = InLocalStorage.apply_to(sdfg,
                                                       dict(array=node.data,
                                                            prefix=prefix),
                                                       verify=False,
                                                       save=False,
                                                       node_a=outer_map_entry,
                                                       node_b=inner_map_entry)
                in_data_node.desc(sdfg).location['gpu'] = symbolic_gpu_id
                in_data_node.desc(sdfg).storage = dtypes.StorageType.GPU_Global

        wcr_data: Dict[str, Any] = {}
        # Add transient Data leading to the outer map
        for edge in graph.in_edges(outer_map_exit):
            node = graph.memlet_path(edge)[-1].dst
            if isinstance(node, nodes.AccessNode):
                data_name = node.data
                # Transients with write-conflict resolution need to be
                # collected first as AccumulateTransient creates a nestedSDFG
                if edge.data.wcr is not None:
                    dtype = sdfg.arrays[data_name].dtype
                    redtype = operations.detect_reduction_type(edge.data.wcr)
                    # Custom reduction can not have an accumulate transient,
                    # as the accumulation from the transient to the outer
                    # storage is not defined.
                    if redtype == dtypes.ReductionType.Custom:
                        warnings.warn(
                            'Using custom reductions in a GPUMultitransformed '
                            'Map only works for a small data volume. For large '
                            'volume there is no guarantee.')
                        continue
                    identity = dtypes.reduction_identity(dtype, redtype)
                    wcr_data[data_name] = identity
                elif (not isinstance(node.desc(sdfg), Scalar)
                      or not self.skip_scalar):
                    if self.use_p2p and node.desc(
                            sdfg).storage is dtypes.StorageType.GPU_Global:
                        continue
                    # Transients without write-conflict resolution
                    if prefix + '_' + data_name in sdfg.arrays:
                        create_array = False
                    else:
                        create_array = True
                    out_data_node = OutLocalStorage.apply_to(
                        sdfg,
                        dict(array=data_name,
                             prefix=prefix,
                             create_array=create_array),
                        verify=False,
                        save=False,
                        node_a=inner_map_exit,
                        node_b=outer_map_exit)
                    out_data_node.desc(sdfg).location['gpu'] = symbolic_gpu_id
                    out_data_node.desc(
                        sdfg).storage = dtypes.StorageType.GPU_Global

        # Add Transients for write-conflict resolution
        if len(wcr_data) != 0:
            nsdfg = AccumulateTransient.apply_to(
                sdfg,
                options=dict(array_identity_dict=wcr_data, prefix=prefix),
                map_exit=inner_map_exit,
                outer_map_exit=outer_map_exit)
            nsdfg.schedule = dtypes.ScheduleType.GPU_Multidevice
            nsdfg.location['gpu'] = symbolic_gpu_id
            for transient_node in graph.successors(nsdfg):
                if isinstance(transient_node, nodes.AccessNode):
                    transient_node.desc(sdfg).location['gpu'] = symbolic_gpu_id
                    transient_node.desc(
                        sdfg).storage = dtypes.StorageType.GPU_Global
                    nsdfg.sdfg.arrays[
                        transient_node.label].location['gpu'] = symbolic_gpu_id
                    nsdfg.sdfg.arrays[
                        transient_node.
                        label].storage = dtypes.StorageType.GPU_Global
            infer_types.set_default_schedule_storage_types_and_location(
                nsdfg.sdfg, dtypes.ScheduleType.GPU_Multidevice,
                symbolic_gpu_id)

        # Remove the parameter of the outer_map from the sdfg symbols,
        # as it got added as a symbol in StripMining.
        if outer_map.params[0] in sdfg.free_symbols:
            sdfg.remove_symbol(outer_map.params[0])