Exemplo n.º 1
0
def _update_plane_provenance(observation, plane, headers):
    logging.debug(f'Begin _update_plane_provenance for {plane.product_id} with'
                  f'observation type: {observation.type}.')
    if observation.type in ['object', 'flat', 'comparison']:
        f_name = headers[0].get('BIAS')
        if f_name is not None:
            bias_name = dn.DAOName(file_name=f_name)
            plane_uri = _make_uris(bias_name.obs_id, bias_name.product_id)
            plane.provenance.inputs.add(plane_uri)
    if observation.type in ['object', 'comparison']:
        f_name = headers[0].get('FLAT')
        if f_name is not None:
            flat_name = dn.DAOName(file_name=f_name)
            plane_uri = _make_uris(flat_name.obs_id, flat_name.product_id)
            plane.provenance.inputs.add(plane_uri)
        # referral to raw plane
        plane_uri = _make_uris(observation.observation_id,
                               observation.observation_id)
        plane.provenance.inputs.add(plane_uri)
    if observation.type == 'object':
        f_name = headers[0].get('DCLOG1')
        if f_name is not None:
            ref_spec1_name = dn.DAOName(file_name=f_name.split()[2])
            plane_uri = _make_uris(ref_spec1_name.obs_id,
                                   ref_spec1_name.product_id)
            plane.provenance.inputs.add(plane_uri)
        if headers[0].get('DCLOG2') is not None:
            ref_spec1_name = dn.DAOName(
                file_name=headers[0].get('DCLOG2').split()[2])
            plane_uri = _make_uris(ref_spec1_name.obs_id,
                                   ref_spec1_name.product_id)
            plane.provenance.inputs.add(plane_uri)
    logging.debug(f'End _update_plane_provenance.')
    def generate_plots(self, obs_id):
        count = 0
        storage_name = dn.DAOName(file_name=self._science_file)
        science_fqn = os.path.join(self._working_dir, storage_name.file_name)
        preview = storage_name.prev
        preview_fqn = os.path.join(self._working_dir, preview)
        thumb = storage_name.thumb
        thumb_fqn = os.path.join(self._working_dir, thumb)
        hdu_list = fits.open(science_fqn)
        header = hdu_list[0].header

        if ('e' in storage_name.file_name or 'p' in storage_name.file_name
                or 'v' in storage_name.file_name):
            count += self._do_cal_processed(hdu_list, header, science_fqn,
                                            storage_name, preview_fqn,
                                            thumb_fqn, obs_id)
        elif storage_name.file_name.startswith('a'):
            count += DAOPreview._do_skycam(science_fqn, preview_fqn, thumb_fqn)
        else:
            count += self._do_sci(hdu_list, header, storage_name, science_fqn,
                                  preview_fqn, thumb_fqn)

        hdu_list.close()

        if count == 2:
            self.add_preview(storage_name.thumb_uri, storage_name.thumb,
                             ProductType.THUMBNAIL)
            self.add_preview(storage_name.prev_uri, storage_name.prev,
                             ProductType.PREVIEW)
            self.add_to_delete(thumb_fqn)
            self.add_to_delete(preview_fqn)
        return count
Exemplo n.º 3
0
def _get_uris(args):
    result = []
    if args.lineage:
        for ii in args.lineage:
            ignore, uri = mc.decompose_lineage(ii)
            result.append(uri)
    elif args.local:
        for ii in args.local:
            obs_id = mc.StorageName.remove_extensions(os.path.basename(ii))
            uri = dn.DAOName(obs_id=obs_id).file_uri
            result.append(uri)
    elif args.observation:
        uri = dn.DAOName(obs_id=args.observation[1]).file_uri
        result.append(uri)
    else:
        raise mc.CadcException(f'Could not define uri from these args {args}')
    return result
Exemplo n.º 4
0
def _repair_provenance_value(value, obs_id):
    logging.debug(f'Begin _repair_provenance_value for {obs_id}')
    # values look like:
    # FLAT_1  = 'dao_c122_2007_000916.fits'
    # FLAT_2  = 'dao_c122_2007_000917.fits'
    # FLAT_3  = 'dao_c122_2007_000918.fits'
    # FLAT_4  = 'dao_c122_2007_000919.fits'
    #
    # OR
    #
    # ZERO_18 = 'dao_c122_2016_012728.fits'
    # ZERO_19 = 'dao_c122_2016_012729.fits'
    # ZERO_20 = 'dao_c122_2016_012730.fits'
    dao_name = dn.DAOName(file_name=value)
    prov_prod_id = dao_name.product_id
    prov_obs_id = dao_name.obs_id
    logging.debug(f'End _repair_provenance_value')
    return prov_obs_id, prov_prod_id
Exemplo n.º 5
0
def test_visit():

    # this should result in three new artifacts being added to every plane:
    # one for a thumbnail and two for previews (one zoom)

    test_rejected = mc.Rejected(REJECTED_FILE)
    test_config = mc.Config()
    test_observable = mc.Observable(test_rejected, mc.Metrics(test_config))

    test_files = {
        # processed spectrum
        'visit_obs_start_v.xml': [
            'dao_c122_2007_000882_v.fits',
            'dao_c122_2007_000882.fits.gz',
        ],
        # processed image
        'visit_obs_start_a.xml': [
            'dao_c182_2016_004034_a.fits',
            'dao_c182_2016_004034.fits.gz',
        ],
        'dao_r182_1989_000369.xml': ['dao_r182_1989_000369.fits.gz'],
        'dao_r122_1989_003111.xml': ['dao_r122_1989_003111.fits.gz'],
        'dao_c122_2017_011124.xml': ['dao_c122_2017_011124.fits.gz'],
        'dao_c182_2017_010870.xml': ['dao_c182_2017_010870.fits.gz'],
        'dao_c182_2017_019322.xml': ['dao_c182_2017_019322.fits.gz'],
        'dao_c182_2017_016292.xml': ['dao_c182_2017_016292.fits.gz'],
        'visit_obs_start_e.xml': [
            'dao_c122_2007_000881.fits.gz',
            'dao_c122_2007_000881_e.fits',
        ],
        'sky_cam_start.xml': ['a2020_06_17_07_00_01.fits']
    }

    test_checksums = {
        'cadc:DAO/dao_c122_2007_000881_e_256.png':
        'md5:e68a3c389bbdf53cde0cca073c7a37c1',
        'cadc:DAO/dao_c122_2007_000881_e_1024.png':
        'md5:48065b2feb0fda3d7561c02b2890efaa',
        'cadc:DAO/dao_c122_2007_000882_256.png':
        'md5:1268e5b79e463ca75580d7e538d88a2a',
        'cadc:DAO/dao_c122_2007_000882_1024.png':
        'md5:5694ee03486899d3b14b404caab22505',
        'cadc:DAO/dao_c122_2017_011124_256.png':
        'md5:9793efcdeec043be8f0c77c7bf875cca',
        'cadc:DAO/dao_c122_2017_011124_1024.png':
        'md5:4d77005756fbed7fc3ae525591cc07db',
        'cadc:DAO/dao_c182_2016_004034_256.png':
        'md5:5c6b6816f8c0a54a0ff041b29247bdd5',
        'cadc:DAO/dao_c182_2016_004034_1024.png':
        'md5:455bddac53488acca46758fbc1d2b096',
        'cadc:DAO/dao_c182_2017_010870_256.png':
        'md5:106a6e0837fd00e971a37462266c2f66',
        'cadc:DAO/dao_c182_2017_010870_1024.png':
        'md5:bc92d495aa0e56eb4ea35f409932391e',
        'cadc:DAO/dao_c182_2017_016292_256.png':
        'md5:ef6bcc6501db0f64dfc7741f5ab37870',
        'cadc:DAO/dao_c182_2017_016292_1024.png':
        'md5:6c425b3606dd598be33b61dfef51d132',
        'cadc:DAO/dao_c182_2017_019322_256.png':
        'md5:dfca85e675f29a33ecdbabc91ed274bf',
        'cadc:DAO/dao_c182_2017_019322_1024.png':
        'md5:2818ddf6acb0f36655fbdfc9e19098e7',
        'cadc:DAO/dao_r122_1989_003111_256.png':
        'md5:7cb2344a84d195228d7fb866a83d031a',
        'cadc:DAO/dao_r122_1989_003111_1024.png':
        'md5:a864bc14955bc1f8524e8829c3ee2ee9',
        'cadc:DAO/dao_r182_1989_000369_256.png':
        'md5:5ef8f53784376b31a12dccb8671aca5e',
        'cadc:DAO/dao_r182_1989_000369_1024.png':
        'md5:2e14aefda2a74b5575f6a4d8d1b1b3cb',
        'cadc:DAO/dao_c122_2007_000882_v_1024.png':
        'md5:37cfb96bce27da93ede75eadabad7b8f',
        'cadc:DAO/a2020_06_17_07_00_01_1024.png':
        'md5:37cfb96bce27da93ede75eadabad7b8f',
    }

    kwargs = {
        'working_directory': TEST_FILES_DIR,
        'cadc_client': None,
        'stream': 'stream',
        'observable': test_observable,
    }

    for entry in glob.glob(f'{TEST_FILES_DIR}/*.png'):
        os.unlink(entry)

    for key, value in test_files.items():
        obs = mc.read_obs_from_file(
            f'{test_fits2caom2_augmentation.TEST_DATA_DIR}/previews/{key}')
        for f_name in value:
            test_name = dao_name.DAOName(f_name)
            kwargs['storage_name'] = test_name

            try:
                ignore = preview_augmentation.visit(obs, **kwargs)
                f_name_list = [test_name.prev_uri, test_name.thumb_uri]
                for p in f_name_list:
                    artifact = obs.planes[test_name.product_id].artifacts[p]
                    # assert artifact.content_checksum.uri ==
                    # test_checksums[p], \
                    #     f'wrong checksum {p} {artifact.content_checksum} ' \
                    #     f'{test_checksums[p]}'
            except Exception as e:
                assert False, f'key {key} value {value} f_name {f_name} {str(e)}'
Exemplo n.º 6
0
def update(observation, **kwargs):
    """Called to fill multiple CAOM model elements and/or attributes (an n:n
    relationship between TDM attributes and CAOM attributes). Must have this
    signature for import_module loading and execution.

    :param observation A CAOM Observation model instance.
    :param **kwargs Everything else."""
    logging.debug('Begin update.')
    mc.check_param(observation, Observation)

    headers = kwargs.get('headers')
    fqn = kwargs.get('fqn')
    uri = kwargs.get('uri')
    dao_name = None
    if uri is not None:
        dao_name = dn.DAOName(artifact_uri=uri)
    if fqn is not None:
        dao_name = dn.DAOName(file_name=os.path.basename(fqn))

    if dao_name is None:
        raise mc.CadcException(f'Need one of fqn or uri defined for '
                               f'{observation.observation_id}')
    # correct the *_axis values
    for plane in observation.planes.values():
        for artifact in plane.artifacts.values():
            if (artifact.uri.replace('.gz', '') != dao_name.file_uri.replace(
                    '.gz', '')):
                continue

            for part in artifact.parts.values():
                for chunk in part.chunks:
                    time_delta = get_time_axis_delta(headers[0])
                    cc.undo_astropy_cdfix_call(chunk, time_delta)

                    if dao_name.file_name.startswith('d'):
                        if plane.data_product_type == DataProductType.SPECTRUM:
                            if (dn.DAOName.is_unprocessed_reticon(artifact.uri)
                                    or dn.DAOName.is_derived(artifact.uri)
                                    and observation.type == 'flat'):
                                cc.reset_energy(chunk)
                            if not artifact.product_type == ProductType.SCIENCE:
                                if observation.type == 'dark':
                                    chunk.position_axis_1 = 3
                                    chunk.position_axis_2 = 4
                                else:
                                    cc.reset_position(chunk)
                                # no energy for calibration?
                                if (observation.type
                                        not in ['flat', 'comparison', 'dark']):
                                    cc.reset_energy(chunk)
                            # DB 04-03-21
                            #  If WAVELENG isn’t present (for unprocessed
                            #  spectra) then all energy metadata should be
                            #  ignored
                            if (not dn.DAOName.is_processed(artifact.uri)
                                    and headers[0].get('WAVELENG') is None):
                                cc.reset_energy(chunk)
                        else:  # DataProductType.IMAGE
                            if dn.DAOName.override_provenance(artifact.uri):
                                plane.provenance.producer = 'Spaceguard_C'
                            # no observable axis when image
                            cc.reset_observable(chunk)
                            if artifact.product_type == ProductType.CALIBRATION:
                                if observation.type != 'dark':
                                    cc.reset_position(chunk)
                                if observation.type not in ['flat', 'dark']:
                                    cc.reset_energy(chunk)

                        # WCS axis wisdom from Pat:
                        #
                        # In general, assigning axis indices above the value of
                        # naxis is allowed but more or less pointless. The
                        # only use case that would justify it is that in a FITS
                        # file there could be a header with NAXIS=2 and
                        # WCSAXES=4 which would tell the fits reader to look
                        # for CTYPE1 through 4 and axes 3 and 4 are metadata.
                        # Assign those values to Chunk only if you care about
                        # capturing that the extra wcs metadata was really in
                        # the fits header and so the order could be preserved;
                        # in general do not assign the 3 and 4.

                        chunk.energy_axis = None
                        chunk.observable_axis = None
                        chunk.time_axis = None
                        naxis = headers[0].get('NAXIS')
                        naxis1 = headers[0].get('NAXIS1')
                        naxis2 = headers[0].get('NAXIS2')
                        chunk.naxis = None
                        chunk.position_axis_1 = None
                        chunk.position_axis_2 = None
                        if naxis is not None:
                            if (naxis1 is not None and naxis2 is not None
                                    and naxis == 2
                                    and chunk.position is not None
                                    and plane.data_product_type is
                                    DataProductType.IMAGE):
                                chunk.naxis = 2
                                chunk.position_axis_1 = 1
                                chunk.position_axis_2 = 2
                            if (naxis1 is not None and naxis == 1
                                    and chunk.energy is not None):
                                chunk.naxis = 1
                                chunk.energy_axis = 1
                    else:
                        chunk.energy_axis = None

        if plane.product_id != dao_name.product_id:
            continue

        # provenance: inputs vs members
        #
        # DB - 29-04-20
        # The inconsistencies are consistent for both telescope for the
        # derived observations: the processed, co-added flats (files with F
        # suffix) and co-added biases (files with B suffix).  These should
        # have the ‘members’ list added to the inputs.  From the definition of
        # provenance:inputs I’m assuming for the science observations,
        # processed comparison arcs, and processed flats having a composite
        # flat and/or bias observation as an ‘input’ is okay rather than
        # breaking these down into their individual members (since those
        # derived observations will all be available in the archive with
        # proper provenance provided).

        if observation.type == 'flat' and cc.is_composite(headers, 'FLAT_'):
            cc.update_plane_provenance(plane, headers, 'FLAT_', dn.COLLECTION,
                                       _repair_provenance_value,
                                       observation.observation_id)
        elif observation.type == 'bias' and cc.is_composite(headers, 'ZERO_'):
            cc.update_plane_provenance(plane, headers, 'ZERO_', dn.COLLECTION,
                                       _repair_provenance_value,
                                       observation.observation_id)

        if dn.DAOName.is_processed(dao_name.file_uri):
            _update_plane_provenance(observation, plane, headers)

        if (cc.is_composite(headers, 'FLAT_')
                or cc.is_composite(headers, 'ZERO_')):
            _update_observation_members(observation)

    logging.debug('Done update.')
    return observation
def visit(observation, **kwargs):
    previewer = DAOPreview(mime_type='image/png', **kwargs)
    dao_name = dn.DAOName(file_name=previewer.science_file)
    return previewer.visit(observation, dao_name)