Exemplo n.º 1
0
    def assimilate(self, HMM, xx, yy):
        E = zeros((HMM.tseq.K + 1, self.N, HMM.Dyn.M))
        Ef = E.copy()
        E[0] = HMM.X0.sample(self.N)

        # Forward pass
        for k, ko, t, dt in progbar(HMM.tseq.ticker):
            E[k] = HMM.Dyn(E[k - 1], t - dt, dt)
            E[k] = add_noise(E[k], dt, HMM.Dyn.noise, self.fnoise_treatm)
            Ef[k] = E[k]

            if ko is not None:
                self.stats.assess(k, ko, 'f', E=E[k])
                Eo = HMM.Obs(E[k], t)
                y = yy[ko]
                E[k] = EnKF_analysis(E[k], Eo, HMM.Obs.noise, y, self.upd_a,
                                     self.stats, ko)
                E[k] = post_process(E[k], self.infl, self.rot)
                self.stats.assess(k, ko, 'a', E=E[k])

        # Backward pass
        for k in progbar(range(HMM.tseq.K)[::-1]):
            A = center(E[k])[0]
            Af = center(Ef[k + 1])[0]

            J = tinv(Af) @ A
            J *= self.DeCorr

            E[k] += (E[k + 1] - Ef[k + 1]) @ J

        for k, ko, _, _ in progbar(HMM.tseq.ticker, desc='Assessing'):
            self.stats.assess(k, ko, 'u', E=E[k])
            if ko is not None:
                self.stats.assess(k, ko, 's', E=E[k])
Exemplo n.º 2
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats

        # Inefficient version, storing full time series ensemble.
        # See iEnKS for a "rolling" version.
        E    = zeros((chrono.K+1, self.N, Dyn.M))
        E[0] = X0.sample(self.N)

        for k, kObs, t, dt in progbar(chrono.ticker):
            E[k] = Dyn(E[k-1], t-dt, dt)
            E[k] = add_noise(E[k], dt, Dyn.noise, self.fnoise_treatm)

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E[k])

                Eo    = Obs(E[k], t)
                y     = yy[kObs]

                # Inds within Lag
                kk    = range(max(0, k-self.Lag*chrono.dkObs), k+1)

                EE    = E[kk]

                EE    = self.reshape_to(EE)
                EE    = EnKF_analysis(EE, Eo, Obs.noise, y, self.upd_a, stats, kObs)
                E[kk] = self.reshape_fr(EE, Dyn.M)
                E[k]  = post_process(E[k], self.infl, self.rot)
                stats.assess(k, kObs, 'a', E=E[k])

        for k, kObs, _, _ in progbar(chrono.ticker, desc='Assessing'):
            stats.assess(k, kObs, 'u', E=E[k])
            if kObs is not None:
                stats.assess(k, kObs, 's', E=E[k])
Exemplo n.º 3
0
    def fun_k(x0, k, *args, **kwargs):
        xx = np.zeros((k + 1, ) + x0.shape)
        xx[0] = x0

        rg = range(k)
        if isinstance(prog, str):
            rg = progbar(rg, prog)
        elif prog:
            rg = progbar(rg, 'Recurs.')

        for i in rg:
            xx[i + 1] = func(xx[i], *args, **kwargs)

        return xx
Exemplo n.º 4
0
    def assimilate(self, HMM, xx, yy):
        Nx = HMM.Dyn.M

        R  = HMM.Obs.noise.C.full
        Q  = 0 if HMM.Dyn.noise.C == 0 else HMM.Dyn.noise.C.full

        mu    = np.zeros((HMM.tseq.K+1, Nx))
        P     = np.zeros((HMM.tseq.K+1, Nx, Nx))

        # Forecasted values
        muf   = np.zeros((HMM.tseq.K+1, Nx))
        Pf    = np.zeros((HMM.tseq.K+1, Nx, Nx))
        Ff    = np.zeros((HMM.tseq.K+1, Nx, Nx))

        mu[0] = HMM.X0.mu
        P[0] = HMM.X0.C.full

        self.stats.assess(0, mu=mu[0], Cov=P[0])

        # Forward pass
        for k, ko, t, dt in progbar(HMM.tseq.ticker, 'ExtRTS->'):
            mu[k]  = HMM.Dyn(mu[k-1], t-dt, dt)
            F      = HMM.Dyn.linear(mu[k-1], t-dt, dt)
            P[k]   = self.infl**(dt)*(F@P[k-1]@F.T) + dt*Q

            # Store forecast and Jacobian
            muf[k] = mu[k]
            Pf[k]  = P[k]
            Ff[k]  = F

            if ko is not None:
                self.stats.assess(k, ko, 'f', mu=mu[k], Cov=P[k])
                H     = HMM.Obs.linear(mu[k], t)
                KG    = mrdiv(P[k] @ H.T, H@P[k]@H.T + R)
                y     = yy[ko]
                mu[k] = mu[k] + KG@(y - HMM.Obs(mu[k], t))
                KH    = KG@H
                P[k]  = (np.eye(Nx) - KH) @ P[k]
                self.stats.assess(k, ko, 'a', mu=mu[k], Cov=P[k])

        # Backward pass
        for k in progbar(range(HMM.tseq.K)[::-1], 'ExtRTS<-'):
            J     = mrdiv(P[k]@Ff[k+1].T, Pf[k+1])
            J    *= self.DeCorr
            mu[k] = mu[k]  + J @ (mu[k+1]  - muf[k+1])
            P[k]  = P[k] + J @ (P[k+1] - Pf[k+1]) @ J.T
        for k in progbar(range(HMM.tseq.K+1), desc='Assess'):
            self.stats.assess(k, mu=mu[k], Cov=P[k])
Exemplo n.º 5
0
    def assimilate(self, HMM, xx, yy):
        R  = HMM.Obs.noise.C.full
        Q  = 0 if HMM.Dyn.noise.C == 0 else HMM.Dyn.noise.C.full

        mu = HMM.X0.mu
        P  = HMM.X0.C.full

        self.stats.assess(0, mu=mu, Cov=P)

        for k, ko, t, dt in progbar(HMM.tseq.ticker):

            mu = HMM.Dyn(mu, t-dt, dt)
            F  = HMM.Dyn.linear(mu, t-dt, dt)
            P  = self.infl**(dt)*(F@[email protected]) + dt*Q

            # Of academic interest? Higher-order linearization:
            # mu_i += 0.5 * (Hessian[f_i] * P).sum()

            if ko is not None:
                self.stats.assess(k, ko, 'f', mu=mu, Cov=P)
                H  = HMM.Obs.linear(mu, t)
                KG = mrdiv(P @ H.T, H@[email protected] + R)
                y  = yy[ko]
                mu = mu + KG@(y - HMM.Obs(mu, t))
                KH = KG@H
                P  = (np.eye(HMM.Dyn.M) - KH) @ P

                self.stats.trHK[ko] = KH.trace()/HMM.Dyn.M

            self.stats.assess(k, ko, mu=mu, Cov=P)
Exemplo n.º 6
0
    def assimilate(self, HMM, xx, yy):
        N, Nx, Rm12 = self.N, HMM.Dyn.M, HMM.Obs.noise.C.sym_sqrt_inv

        E = HMM.X0.sample(N)
        w = 1/N*np.ones(N)

        self.stats.assess(0, E=E, w=w)

        for k, ko, t, dt in progbar(HMM.tseq.ticker):
            E = HMM.Dyn(E, t-dt, dt)
            if HMM.Dyn.noise.C != 0:
                D  = rnd.randn(N, Nx)
                E += np.sqrt(dt*self.qroot)*([email protected])

                if self.qroot != 1.0:
                    # Evaluate p/q (for each col of D) when q:=p**(1/self.qroot).
                    w *= np.exp(-0.5*np.sum(D**2, axis=1) * (1 - 1/self.qroot))
                    w /= w.sum()

            if ko is not None:
                self.stats.assess(k, ko, 'f', E=E, w=w)

                innovs = (yy[ko] - HMM.Obs(E, t)) @ Rm12.T
                w      = reweight(w, innovs=innovs)

                if trigger_resampling(w, self.NER, [self.stats, E, k, ko]):
                    C12     = self.reg*auto_bandw(N, Nx)*raw_C12(E, w)
                    # C12  *= np.sqrt(rroot) # Re-include?
                    idx, w  = resample(w, self.resampl, wroot=self.wroot)
                    E, chi2 = regularize(C12, E, idx, self.nuj)
                    # if rroot != 1.0:
                    #     # Compensate for rroot
                    #     w *= np.exp(-0.5*chi2*(1 - 1/rroot))
                    #     w /= w.sum()
            self.stats.assess(k, ko, 'u', E=E, w=w)
Exemplo n.º 7
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats

        R = Obs.noise.C.full
        Q = 0 if Dyn.noise.C == 0 else Dyn.noise.C.full

        mu = X0.mu
        P = X0.C.full

        stats.assess(0, mu=mu, Cov=P)

        for k, kObs, t, dt in progbar(chrono.ticker):

            mu = Dyn(mu, t - dt, dt)
            F = Dyn.linear(mu, t - dt, dt)
            P = self.infl**(dt) * (F @ P @ F.T) + dt * Q

            # Of academic interest? Higher-order linearization:
            # mu_i += 0.5 * (Hessian[f_i] * P).sum()

            if kObs is not None:
                stats.assess(k, kObs, 'f', mu=mu, Cov=P)
                H = Obs.linear(mu, t)
                KG = mrdiv(P @ H.T, H @ P @ H.T + R)
                y = yy[kObs]
                mu = mu + KG @ (y - Obs(mu, t))
                KH = KG @ H
                P = (np.eye(Dyn.M) - KH) @ P

                stats.trHK[kObs] = KH.trace() / Dyn.M

            stats.assess(k, kObs, mu=mu, Cov=P)
Exemplo n.º 8
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, stats = HMM.Dyn, HMM.Obs, HMM.t, self.stats

        # Compute "climatological" Kalman gain
        muC = np.mean(xx, 0)
        AC  = xx - muC
        PC  = (AC.T @ AC) / (xx.shape[0] - 1)

        # Setup scalar "time-series" covariance dynamics.
        # ONLY USED FOR DIAGNOSTICS, not to affect the Kalman gain.
        L  = series.estimate_corr_length(AC.ravel(order='F'))
        SM = fit_sigmoid(1/2, L, 0)

        # Init
        mu = muC
        stats.assess(0, mu=mu, Cov=PC)

        for k, kObs, t, dt in progbar(chrono.ticker):
            # Forecast
            mu = Dyn(mu, t-dt, dt)
            if kObs is not None:
                stats.assess(k, kObs, 'f', mu=muC, Cov=PC)

                # Analysis
                H  = Obs.linear(muC, t)
                KG  = mrdiv([email protected], H@[email protected] + Obs.noise.C.full)
                mu = muC + KG@(yy[kObs] - Obs(muC, t))

                P  = (np.eye(Dyn.M) - KG@H) @ PC
                SM = fit_sigmoid(P.trace()/PC.trace(), L, k)

            stats.assess(k, kObs, mu=mu, Cov=2*PC*SM(k))
Exemplo n.º 9
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats

        N1   = self.N-1
        R    = Obs.noise
        Rm12 = Obs.noise.C.sym_sqrt_inv

        E = X0.sample(self.N)
        stats.assess(0, E=E)

        for k, kObs, t, dt in progbar(chrono.ticker):
            E = Dyn(E, t-dt, dt)
            E = add_noise(E, dt, Dyn.noise, self.fnoise_treatm)

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E)
                y    = yy[kObs]
                inds = serial_inds(self.ordr, y, R, center(E)[0])

                state_taperer = Obs.localizer(self.loc_rad, 'y2x', t, self.taper)
                for j in inds:
                    # Prep:
                    # ------------------------------------------------------
                    Eo = Obs(E, t)
                    xo = np.mean(Eo, 0)
                    Y  = Eo - xo
                    mu = np.mean(E, 0)
                    A  = E-mu
                    # Update j-th component of observed ensemble:
                    # ------------------------------------------------------
                    Y_j    = Rm12[j, :] @ Y.T
                    dy_j   = Rm12[j, :] @ (y - xo)
                    # Prior var * N1:
                    sig2_j = Y_j@Y_j
                    if sig2_j < 1e-9:
                        continue
                    # Update (below, we drop the locality subscript: _j)
                    sig2_u = 1/(1/sig2_j + 1/N1)      # KG * N1
                    alpha  = (N1/(N1+sig2_j))**(0.5)  # Update contraction factor
                    dy2    = sig2_u * dy_j/N1         # Mean update
                    Y2     = alpha*Y_j                # Anomaly update
                    # Update state (regress update from obs space, using localization)
                    # ------------------------------------------------------
                    ii, tapering = state_taperer(j)
                    if len(ii) == 0:
                        continue
                    Regression = (A[:, ii]*tapering).T @ Y_j/np.sum(Y_j**2)
                    mu[ii]   += Regression*dy2
                    A[:, ii]   += np.outer(Y2 - Y_j, Regression)
                    # Without localization:
                    # Regression = A.T @ Y_j/np.sum(Y_j**2)
                    # mu        += Regression*dy2
                    # A         += np.outer(Y2 - Y_j, Regression)

                    E = mu + A

                E = post_process(E, self.infl, self.rot)

            stats.assess(k, kObs, E=E)
Exemplo n.º 10
0
 def assimilate(self, HMM, xx, yy):
     prev = xx[0]
     self.stats.assess(0, mu=prev)
     for k, ko, _t, _dt in progbar(HMM.tseq.ticker):
         self.stats.assess(k, ko, 'fu', mu=xx[k - 1])
         if ko is not None:
             self.stats.assess(k, ko, 'a', mu=prev)
             prev = xx[k]
Exemplo n.º 11
0
    def replay(self, figlist="default", speed=np.inf, t1=0, t2=None, **kwargs):
        """Replay LivePlot with what's been stored in 'self'.

        - t1, t2: time window to plot.
        - 'figlist' and 'speed': See LivePlot's doc.

        .. note:: `store_u` (whether to store non-obs-time stats) must
        have been `True` to have smooth graphs as in the actual LivePlot.

        .. note:: Ensembles are generally not stored in the stats
        and so cannot be replayed.
        """
        # Time settings
        tseq = self.HMM.tseq
        if t2 is None:
            t2 = t1 + tseq.Tplot

        # Ens does not get stored in stats, so we cannot replay that.
        # If the LPs are initialized with P0!=None, then they will avoid ens plotting.
        # TODO 4: This system for switching from Ens to stats must be replaced.
        #       It breaks down when M is very large.
        try:
            P0 = np.full_like(self.HMM.X0.C.full, np.nan)
        except AttributeError:  # e.g. if X0 is defined via sampling func
            P0 = np.eye(self.HMM.Nx)

        LP = liveplotting.LivePlot(self,
                                   figlist,
                                   P=P0,
                                   speed=speed,
                                   Tplot=t2 - t1,
                                   replay=True,
                                   **kwargs)
        plt.pause(.01)  # required when speed=inf

        # Remember: must use progbar to unblock read1.
        # Let's also make a proper description.
        desc = self.xp.da_method + " (replay)"

        # Play through assimilation cycles
        for k, ko, t, _dt in progbar(tseq.ticker, desc):
            if t1 <= t <= t2:
                if ko is not None:
                    LP.update((k, ko, 'f'), None, None)
                    LP.update((k, ko, 'a'), None, None)
                LP.update((k, ko, 'u'), None, None)

        # Pause required when speed=inf.
        # On Mac, it was also necessary to do it for each fig.
        if LP.any_figs:
            for _name, updater in LP.figures.items():
                if plt.fignum_exists(_name) and getattr(
                        updater, 'is_active', 1):
                    plt.figure(_name)
                    plt.pause(0.01)
Exemplo n.º 12
0
    def assimilate(self, HMM, xx, yy):
        muC = np.mean(xx, 0)
        AC = xx - muC
        PC = CovMat(AC, 'A')

        self.stats.assess(0, mu=muC, Cov=PC)
        self.stats.trHK[:] = 0

        for k, ko, _, _ in progbar(HMM.tseq.ticker):
            fau = 'u' if ko is None else 'fau'
            self.stats.assess(k, ko, fau, mu=muC, Cov=PC)
Exemplo n.º 13
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats
        N, xN, Nx, Rm12 = self.N, self.xN, Dyn.M, Obs.noise.C.sym_sqrt_inv

        DD = None
        E = X0.sample(N)
        w = 1 / N * np.ones(N)

        stats.assess(0, E=E, w=w)

        for k, kObs, t, dt in progbar(chrono.ticker):
            E = Dyn(E, t - dt, dt)
            if Dyn.noise.C != 0:
                E += np.sqrt(dt) * (rnd.randn(N, Nx) @ Dyn.noise.C.Right)

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E, w=w)
                y = yy[kObs]
                wD = w.copy()

                innovs = (y - Obs(E, t)) @ Rm12.T
                w = reweight(w, innovs=innovs)

                if trigger_resampling(w, self.NER, [stats, E, k, kObs]):
                    # Compute kernel colouring matrix
                    cholR = self.Qs * auto_bandw(N, Nx) * raw_C12(E, wD)
                    cholR = chol_reduce(cholR)

                    # Generate N·xN random numbers from NormDist(0,1)
                    if DD is None or not self.re_use:
                        DD = rnd.randn(N * xN, Nx)

                    # Duplicate and jitter
                    ED = E.repeat(xN, 0)
                    wD = wD.repeat(xN) / xN
                    ED += DD[:, :len(cholR)] @ cholR

                    # Update weights
                    innovs = (y - Obs(ED, t)) @ Rm12.T
                    wD = reweight(wD, innovs=innovs)

                    # Resample and reduce
                    wroot = 1.0
                    while wroot < self.wroot_max:
                        idx, w = resample(wD, self.resampl, wroot=wroot, N=N)
                        dups = sum(mask_unique_of_sorted(idx))
                        if dups == 0:
                            E = ED[idx]
                            break
                        else:
                            wroot += 0.1
            stats.assess(k, kObs, 'u', E=E, w=w)
Exemplo n.º 14
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats, N = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats, self.N

        N1 = N - 1
        step = 1 / N
        cdf_grid = np.linspace(step / 2, 1 - step / 2, N)

        R = Obs.noise
        Rm12 = Obs.noise.C.sym_sqrt_inv

        E = X0.sample(N)
        stats.assess(0, E=E)

        for k, kObs, t, dt in progbar(chrono.ticker):
            E = Dyn(E, t - dt, dt)
            E = add_noise(E, dt, Dyn.noise, self.fnoise_treatm)

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E)
                y = yy[kObs]
                inds = serial_inds(self.ordr, y, R, center(E)[0])

                for _, j in enumerate(inds):
                    Eo = Obs(E, t)
                    xo = np.mean(Eo, 0)
                    Y = Eo - xo
                    mu = np.mean(E, 0)
                    A = E - mu

                    # Update j-th component of observed ensemble
                    dYf = Rm12[j, :] @ (y - Eo).T  # NB: does Rm12 make sense?
                    Yj = Rm12[j, :] @ Y.T
                    Regr = A.T @ Yj / np.sum(Yj**2)

                    Sorted = np.argsort(dYf)
                    Revert = np.argsort(Sorted)
                    dYf = dYf[Sorted]
                    w = reweight(np.ones(N), innovs=dYf[:, None])  # Lklhd
                    w = w.clip(1e-10)  # Avoid zeros in interp1
                    cw = w.cumsum()
                    cw /= cw[-1]
                    cw *= N1 / N
                    cdfs = np.minimum(np.maximum(cw[0], cdf_grid), cw[-1])
                    dhE = -dYf + np.interp(cdfs, cw, dYf)
                    dhE = dhE[Revert]
                    # Update state by regression
                    E += np.outer(-dhE, Regr)

                E = post_process(E, self.infl, self.rot)

            stats.assess(k, kObs, E=E)
Exemplo n.º 15
0
    def assimilate(self, HMM, xx, yy):
        chrono, stats = HMM.t, self.stats

        muC = np.mean(xx, 0)
        AC  = xx - muC
        PC  = CovMat(AC, 'A')

        stats.assess(0, mu=muC, Cov=PC)
        stats.trHK[:] = 0

        for k, kObs, _, _ in progbar(chrono.ticker):
            fau = 'u' if kObs is None else 'fau'
            stats.assess(k, kObs, fau, mu=muC, Cov=PC)
Exemplo n.º 16
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats
        N, Nx, Rm12 = self.N, Dyn.M, Obs.noise.C.sym_sqrt_inv

        E = X0.sample(N)
        w = 1 / N * np.ones(N)

        stats.assess(0, E=E, w=w)

        for k, kObs, t, dt in progbar(chrono.ticker):
            E = Dyn(E, t - dt, dt)
            if Dyn.noise.C != 0:
                D = rnd.randn(N, Nx)
                E += np.sqrt(dt * self.qroot) * (D @ Dyn.noise.C.Right)

                if self.qroot != 1.0:
                    # Evaluate p/q (for each col of D) when q:=p**(1/self.qroot).
                    w *= np.exp(-0.5 * np.sum(D**2, axis=1) *
                                (1 - 1 / self.qroot))
                    w /= w.sum()

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E, w=w)

                innovs = (yy[kObs] - Obs(E, t)) @ Rm12.T
                w = reweight(w, innovs=innovs)

                if trigger_resampling(w, self.NER, [stats, E, k, kObs]):
                    C12 = self.reg * auto_bandw(N, Nx) * raw_C12(E, w)
                    # C12  *= np.sqrt(rroot) # Re-include?

                    wroot = 1.0
                    while True:
                        s = (w**(1 / wroot - 1)).clip(max=1e100)
                        s /= (s * w).sum()
                        sw = s * w
                        if 1 / (sw @ sw) < N * self.alpha:
                            wroot += 0.2
                        else:
                            stats.wroot[kObs] = wroot
                            break
                    idx, w = resample(sw, self.resampl, wroot=1)

                    E, chi2 = regularize(C12, E, idx, self.nuj)
                    # if rroot != 1.0:
                    #     Compensate for rroot
                    #     w *= np.exp(-0.5*chi2*(1 - 1/rroot))
                    #     w /= w.sum()
            stats.assess(k, kObs, 'u', E=E, w=w)
Exemplo n.º 17
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats

        E = zeros((chrono.K + 1, self.N, Dyn.M))
        Ef = E.copy()
        E[0] = X0.sample(self.N)

        # Forward pass
        for k, kObs, t, dt in progbar(chrono.ticker):
            E[k] = Dyn(E[k - 1], t - dt, dt)
            E[k] = add_noise(E[k], dt, Dyn.noise, self.fnoise_treatm)
            Ef[k] = E[k]

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E[k])
                Eo = Obs(E[k], t)
                y = yy[kObs]
                E[k] = EnKF_analysis(E[k], Eo, Obs.noise, y, self.upd_a, stats,
                                     kObs)
                E[k] = post_process(E[k], self.infl, self.rot)
                stats.assess(k, kObs, 'a', E=E[k])

        # Backward pass
        for k in progbar(range(chrono.K)[::-1]):
            A = center(E[k])[0]
            Af = center(Ef[k + 1])[0]

            J = tinv(Af) @ A
            J *= self.cntr

            E[k] += (E[k + 1] - Ef[k + 1]) @ J

        for k, kObs, _, _ in progbar(chrono.ticker, desc='Assessing'):
            stats.assess(k, kObs, 'u', E=E[k])
            if kObs is not None:
                stats.assess(k, kObs, 's', E=E[k])
Exemplo n.º 18
0
    def assimilate(self, HMM, xx, yy):
        chrono, X0, stats = HMM.t, HMM.X0, self.stats
        R, KObs = HMM.Obs.noise.C, HMM.t.KObs
        Rm12 = R.sym_sqrt_inv

        assert HMM.Dyn.noise.C == 0, (
            "Q>0 not yet supported."
            " See Sakov et al 2017: 'An iEnKF with mod. error'")

        if self.bundle:
            EPS = 1e-4  # Sakov/Boc use T=EPS*eye(N), with EPS=1e-4, but I ...
        else:
            EPS = 1.0  # ... prefer using  T=EPS*T, yielding a conditional cloud shape

        # Initial ensemble
        E = X0.sample(self.N)

        # Forward ensemble to kObs = 0 if Lag = 0
        t = 0
        k = 0
        if self.Lag == 0:
            for k, t, dt in chrono.cycle(kObs=0):
                stats.assess(k - 1, None, 'u', E=E)
                E = HMM.Dyn(E, t - dt, dt)

        # Loop over DA windows (DAW).
        for kObs in progbar(range(0, KObs + self.Lag + 1)):
            kLag = kObs - self.Lag
            DAW = range(max(0, kLag + 1), min(kObs, KObs) + 1)

            # Assimilation (if ∃ "not-fully-assimlated" obs).
            if kObs <= KObs:
                E = iEnKS_update(self.upd_a, E, DAW, HMM, stats, EPS, yy[kObs],
                                 (k, kObs, t), Rm12, self.xN, self.MDA,
                                 (self.nIter, self.wtol))
                E = post_process(E, self.infl, self.rot)

            # Slide/shift DAW by propagating smoothed ('s') ensemble from [kLag].
            if kLag >= 0:
                stats.assess(chrono.kkObs[kLag], kLag, 's', E=E)
            cycle_window = range(max(kLag + 1, 0),
                                 min(max(kLag + 1 + 1, 0), KObs + 1))

            for kCycle in cycle_window:
                for k, t, dt in chrono.cycle(kCycle):
                    stats.assess(k - 1, None, 'u', E=E)
                    E = HMM.Dyn(E, t - dt, dt)

        stats.assess(k, KObs, 'us', E=E)
Exemplo n.º 19
0
    def fun_k(x0, k, *args, **kwargs):
        xx = np.zeros((k + 1, ) + x0.shape)
        xx[0] = x0

        # Prog. bar name
        if prog == False:
            desc = None
        elif prog == None:
            desc = "Recurs."
        else:
            desc = prog

        for i in progbar(range(k), desc):
            xx[i + 1] = func(xx[i], *args, **kwargs)

        return xx
Exemplo n.º 20
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats
        Rm12 = Obs.noise.C.sym_sqrt_inv

        E = X0.sample(self.N)
        stats.assess(0, E=E)

        for k, kObs, t, dt in progbar(chrono.ticker):
            E = Dyn(E, t - dt, dt)
            E = add_noise(E, dt, Dyn.noise, self.fnoise_treatm)

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E)
                mu = np.mean(E, 0)
                A = E - mu

                Eo = Obs(E, t)
                xo = np.mean(Eo, 0)
                YR = (Eo - xo) @ Rm12.T
                yR = (yy[kObs] - xo) @ Rm12.T

                state_batches, obs_taperer = Obs.localizer(
                    self.loc_rad, 'x2y', t, self.taper)
                for ii in state_batches:
                    # Localize obs
                    jj, tapering = obs_taperer(ii)
                    if len(jj) == 0:
                        return

                    Y_jj = YR[:, jj] * np.sqrt(tapering)
                    dy_jj = yR[jj] * np.sqrt(tapering)

                    # NETF:
                    # This "paragraph" is the only difference to the LETKF.
                    innovs = (dy_jj - Y_jj) / self.Rs
                    if 'laplace' in str(type(Obs.noise)).lower():
                        w = laplace_lklhd(innovs)
                    else:  # assume Gaussian
                        w = reweight(np.ones(self.N), innovs=innovs)
                    dmu = w @ A[:, ii]
                    AT = np.sqrt(self.N) * funm_psd(
                        np.diag(w) - np.outer(w, w), np.sqrt) @ A[:, ii]

                    E[:, ii] = mu[ii] + dmu + AT

                E = post_process(E, self.infl, self.rot)
            stats.assess(k, kObs, E=E)
Exemplo n.º 21
0
    def simulate(self, desc='Truth & Obs'):
        """Generate synthetic truth and observations."""
        Dyn, Obs, chrono, X0 = self.Dyn, self.Obs, self.t, self.X0

        # Init
        xx    = np.zeros((chrono.K   + 1, Dyn.M))
        yy    = np.zeros((chrono.KObs+1, Obs.M))

        xx[0] = X0.sample(1)

        # Loop
        for k, kObs, t, dt in pb.progbar(chrono.ticker, desc):
            xx[k] = Dyn(xx[k-1], t-dt, dt) + np.sqrt(dt)*Dyn.noise.sample(1)
            if kObs is not None:
                yy[kObs] = Obs(xx[k], t) + Obs.noise.sample(1)

        return xx, yy
Exemplo n.º 22
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats
        N, Nx, R = self.N, Dyn.M, Obs.noise.C.full

        E = X0.sample(N)
        w = 1 / N * np.ones(N)

        stats.assess(0, E=E, w=w)

        for k, kObs, t, dt in progbar(chrono.ticker):
            E = Dyn(E, t - dt, dt)
            if Dyn.noise.C != 0:
                E += np.sqrt(dt) * (rnd.randn(N, Nx) @ Dyn.noise.C.Right)

            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E, w=w)
                y = yy[kObs]

                Eo = Obs(E, t)
                innovs = y - Eo

                # EnKF-ish update
                s = self.Qs * auto_bandw(N, Nx)
                As = s * raw_C12(E, w)
                Ys = s * raw_C12(Eo, w)
                C = Ys.T @ Ys + R
                KG = As.T @ mrdiv(Ys, C)
                E += sample_quickly_with(As)[0]
                D = Obs.noise.sample(N)
                dE = KG @ (y - Obs(E, t) - D).T
                E = E + dE.T

                # Importance weighting
                chi2 = innovs * mldiv(C, innovs.T).T
                logL = -0.5 * np.sum(chi2, axis=1)
                w = reweight(w, logL=logL)

                # Resampling
                if trigger_resampling(w, self.NER, [stats, E, k, kObs]):
                    C12 = self.reg * auto_bandw(N, Nx) * raw_C12(E, w)
                    idx, w = resample(w, self.resampl, wroot=self.wroot)
                    E, _ = regularize(C12, E, idx, self.nuj)

            stats.assess(k, kObs, 'u', E=E, w=w)
Exemplo n.º 23
0
    def assimilate(self, HMM, xx, yy):
        # Init
        E = HMM.X0.sample(self.N)
        self.stats.assess(0, E=E)

        # Cycle
        for k, ko, t, dt in progbar(HMM.tseq.ticker):
            E = HMM.Dyn(E, t - dt, dt)
            E = add_noise(E, dt, HMM.Dyn.noise, self.fnoise_treatm)

            # Analysis update
            if ko is not None:
                self.stats.assess(k, ko, 'f', E=E)
                E = EnKF_analysis(E, HMM.Obs(E, t), HMM.Obs.noise, yy[ko],
                                  self.upd_a, self.stats, ko)
                E = post_process(E, self.infl, self.rot)

            self.stats.assess(k, ko, E=E)
Exemplo n.º 24
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats

        if isinstance(self.B, np.ndarray):
            # compare ndarray 1st to avoid == error for ndarray
            B = self.B.astype(float)
        elif self.B in (None, 'clim'):
            # Use climatological cov, estimated from truth
            B = np.cov(xx.T)
        elif self.B == 'eye':
            B = np.eye(HMM.Nx)
        else:
            raise ValueError("Bad input B.")
        B *= self.xB

        # ONLY USED FOR DIAGNOSTICS, not to change the Kalman gain.
        CC = 2 * np.cov(xx.T)
        L = series.estimate_corr_length(center(xx)[0].ravel(order='F'))
        P = X0.C.full
        SM = fit_sigmoid(P.trace() / CC.trace(), L, 0)

        # Init
        mu = X0.mu
        stats.assess(0, mu=mu, Cov=P)

        for k, kObs, t, dt in progbar(chrono.ticker):
            # Forecast
            mu = Dyn(mu, t - dt, dt)
            P = CC * SM(k)

            if kObs is not None:
                stats.assess(k, kObs, 'f', mu=mu, Cov=P)

                # Analysis
                H = Obs.linear(mu, t)
                KG = mrdiv(B @ H.T, H @ B @ H.T + Obs.noise.C.full)
                mu = mu + KG @ (yy[kObs] - Obs(mu, t))

                # Re-calibrate fit_sigmoid with new W0 = Pa/B
                P = (np.eye(Dyn.M) - KG @ H) @ B
                SM = fit_sigmoid(P.trace() / CC.trace(), L, k)

            stats.assess(k, kObs, mu=mu, Cov=P)
Exemplo n.º 25
0
    def simulate(self, desc='Truth & Obs'):
        """Generate synthetic truth and observations."""
        Dyn, Obs, tseq, X0 = self.Dyn, self.Obs, self.tseq, self.X0

        # Init
        xx = np.zeros((tseq.K + 1, Dyn.M))
        yy = np.zeros((tseq.Ko + 1, Obs.M))

        x = X0.sample(1)
        xx[0] = x

        # Loop
        for k, ko, t, dt in pb.progbar(tseq.ticker, desc):
            x = Dyn(x, t - dt, dt)
            x = x + np.sqrt(dt) * Dyn.noise.sample(1)
            if ko is not None:
                yy[ko] = Obs(x, t) + Obs.noise.sample(1)
            xx[k] = x

        return xx, yy
Exemplo n.º 26
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats

        # Init
        E = X0.sample(self.N)
        stats.assess(0, E=E)

        # Loop
        for k, kObs, t, dt in progbar(chrono.ticker):
            E = Dyn(E, t-dt, dt)
            E = add_noise(E, dt, Dyn.noise, self.fnoise_treatm)

            # Analysis update
            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E)
                E = EnKF_analysis(E, Obs(E, t), Obs.noise,
                                  yy[kObs], self.upd_a, stats, kObs)
                E = post_process(E, self.infl, self.rot)

            stats.assess(k, kObs, E=E)
Exemplo n.º 27
0
    def assimilate(self, HMM, xx, yy):
        E = HMM.X0.sample(self.N)
        self.stats.assess(0, E=E)
        self.stats.new_series("ad_inf", 1, HMM.tseq.Ko + 1)

        with multiproc.Pool(self.mp) as pool:
            for k, ko, t, dt in progbar(HMM.tseq.ticker):
                E = HMM.Dyn(E, t - dt, dt)
                E = add_noise(E, dt, HMM.Dyn.noise, self.fnoise_treatm)

                if ko is not None:
                    self.stats.assess(k, ko, 'f', E=E)
                    batch, taper = HMM.Obs.localizer(self.loc_rad, 'x2y', t,
                                                     self.taper)
                    E, stats = local_analyses(E, HMM.Obs(E, t),
                                              HMM.Obs.noise.C, yy[ko], batch,
                                              taper, pool.map, self.xN, self.g)
                    self.stats.write(stats, k, ko, "a")
                    E = post_process(E, self.infl, self.rot)

                self.stats.assess(k, ko, E=E)
Exemplo n.º 28
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats, N = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats, self.N
        R, KObs, N1 = HMM.Obs.noise.C, HMM.t.KObs, N - 1
        Rm12 = R.sym_sqrt_inv

        assert Dyn.noise.C == 0, (
            "Q>0 not yet supported."
            " See Sakov et al 2017: 'An iEnKF with mod. error'")

        if self.bundle:
            EPS = 1e-4  # Sakov/Boc use T=EPS*eye(N), with EPS=1e-4, but I ...
        else:
            EPS = 1.0  # ... prefer using  T=EPS*T, yielding a conditional cloud shape

        # Initial ensemble
        E = X0.sample(N)

        # Loop over DA windows (DAW).
        for kObs in progbar(np.arange(-1, KObs + self.Lag + 1)):
            kLag = kObs - self.Lag
            DAW = range(max(0, kLag + 1), min(kObs, KObs) + 1)

            # Assimilation (if ∃ "not-fully-assimlated" obs).
            if 0 <= kObs <= KObs:

                # Init iterations.
                X0, x0 = center(E)  # Decompose ensemble.
                w = np.zeros(N)  # Control vector for the mean state.
                T = np.eye(N)  # Anomalies transform matrix.
                Tinv = np.eye(N)
                # Explicit Tinv [instead of tinv(T)] allows for merging MDA code
                # with iEnKS/EnRML code, and flop savings in 'Sqrt' case.

                for iteration in np.arange(self.nIter):
                    # Reconstruct smoothed ensemble.
                    E = x0 + (w + EPS * T) @ X0
                    # Forecast.
                    for kCycle in DAW:
                        for k, t, dt in chrono.cycle(kCycle):  # noqa
                            E = Dyn(E, t - dt, dt)
                    # Observe.
                    Eo = Obs(E, t)

                    # Undo the bundle scaling of ensemble.
                    if EPS != 1.0:
                        E = inflate_ens(E, 1 / EPS)
                        Eo = inflate_ens(Eo, 1 / EPS)

                    # Assess forecast stats; store {Xf, T_old} for analysis assessment.
                    if iteration == 0:
                        stats.assess(k, kObs, 'f', E=E)
                        Xf, xf = center(E)
                    T_old = T

                    # Prepare analysis.
                    y = yy[kObs]  # Get current obs.
                    Y, xo = center(Eo)  # Get obs {anomalies, mean}.
                    dy = (y - xo) @ Rm12.T  # Transform obs space.
                    Y = Y @ Rm12.T  # Transform obs space.
                    Y0 = Tinv @ Y  # "De-condition" the obs anomalies.
                    V, s, UT = svd0(Y0)  # Decompose Y0.

                    # Set "cov normlzt fctr" za ("effective ensemble size")
                    # => pre_infl^2 = (N-1)/za.
                    if self.xN is None:
                        za = N1
                    else:
                        za = zeta_a(*hyperprior_coeffs(s, N, self.xN), w)
                    if self.MDA:
                        # inflation (factor: nIter) of the ObsErrCov.
                        za *= self.nIter

                    # Post. cov (approx) of w,
                    # estimated at current iteration, raised to power.
                    def Cowp(expo):
                        return (V * (pad0(s**2, N) + za)**-expo) @ V.T

                    Cow1 = Cowp(1.0)

                    if self.MDA:  # View update as annealing (progressive assimilation).
                        Cow1 = Cow1 @ T  # apply previous update
                        dw = dy @ Y.T @ Cow1
                        if 'PertObs' in self.upd_a:  # == "ES-MDA". By Emerick/Reynolds
                            D = mean0(np.random.randn(*Y.shape)) * np.sqrt(
                                self.nIter)
                            T -= (Y + D) @ Y.T @ Cow1
                        elif 'Sqrt' in self.upd_a:  # == "ETKF-ish". By Raanes
                            T = Cowp(0.5) * np.sqrt(za) @ T
                        elif 'Order1' in self.upd_a:  # == "DEnKF-ish". By Emerick
                            T -= 0.5 * Y @ Y.T @ Cow1
                        # Tinv = eye(N) [as initialized] coz MDA does not de-condition.

                    else:  # View update as Gauss-Newton optimzt. of log-posterior.
                        grad = Y0 @ dy - w * za  # Cost function gradient
                        dw = grad @ Cow1  # Gauss-Newton step
                        # ETKF-ish". By Bocquet/Sakov.
                        if 'Sqrt' in self.upd_a:
                            # Sqrt-transforms
                            T = Cowp(0.5) * np.sqrt(N1)
                            Tinv = Cowp(-.5) / np.sqrt(N1)
                            # Tinv saves time [vs tinv(T)] when Nx<N
                        # "EnRML". By Oliver/Chen/Raanes/Evensen/Stordal.
                        elif 'PertObs' in self.upd_a:
                            D     = mean0(np.random.randn(*Y.shape)) \
                                if iteration == 0 else D
                            gradT = -(Y + D) @ Y0.T + N1 * (np.eye(N) - T)
                            T = T + gradT @ Cow1
                            # Tinv= tinv(T, threshold=N1)  # unstable
                            Tinv = sla.inv(T + 1)  # the +1 is for stability.
                        # "DEnKF-ish". By Raanes.
                        elif 'Order1' in self.upd_a:
                            # Included for completeness; does not make much sense.
                            gradT = -0.5 * Y @ Y0.T + N1 * (np.eye(N) - T)
                            T = T + gradT @ Cow1
                            Tinv = tinv(T, threshold=N1)

                    w += dw
                    if dw @ dw < self.wtol * N:
                        break

                # Assess (analysis) stats.
                # The final_increment is a linearization to
                # (i) avoid re-running the model and
                # (ii) reproduce EnKF in case nIter==1.
                final_increment = (dw + T - T_old) @ Xf
                # See docs/snippets/iEnKS_Ea.jpg.
                stats.assess(k, kObs, 'a', E=E + final_increment)
                stats.iters[kObs] = iteration + 1
                if self.xN:
                    stats.infl[kObs] = np.sqrt(N1 / za)

                # Final (smoothed) estimate of E at [kLag].
                E = x0 + (w + T) @ X0
                E = post_process(E, self.infl, self.rot)

            # Slide/shift DAW by propagating smoothed ('s') ensemble from [kLag].
            if -1 <= kLag < KObs:
                if kLag >= 0:
                    stats.assess(chrono.kkObs[kLag], kLag, 's', E=E)
                for k, t, dt in chrono.cycle(kLag + 1):
                    stats.assess(k - 1, None, 'u', E=E)
                    E = Dyn(E, t - dt, dt)

        stats.assess(k, KObs, 'us', E=E)
Exemplo n.º 29
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats
        R, KObs = HMM.Obs.noise.C, HMM.t.KObs
        Rm12 = R.sym_sqrt_inv
        Nx = Dyn.M

        # Set background covariance. Note that it is static (compare to iEnKS).
        if self.B in (None, 'clim'):
            # Use climatological cov, ...
            B = np.cov(xx.T)  # ... estimated from truth
        elif self.B == 'eye':
            B = np.eye(Nx)
        else:
            B = self.B
        B *= self.xB
        B12 = CovMat(B).sym_sqrt

        # Init
        x = X0.mu
        stats.assess(0, mu=x, Cov=B)

        # Loop over DA windows (DAW).
        for kObs in progbar(np.arange(-1, KObs + self.Lag + 1)):
            kLag = kObs - self.Lag
            DAW = range(max(0, kLag + 1), min(kObs, KObs) + 1)

            # Assimilation (if ∃ "not-fully-assimlated" obs).
            if 0 <= kObs <= KObs:

                # Init iterations.
                w = np.zeros(Nx)  # Control vector for the mean state.
                x0 = x.copy()  # Increment reference.

                for iteration in np.arange(self.nIter):
                    # Reconstruct smoothed state.
                    x = x0 + B12 @ w
                    X = B12  # Aggregate composite TLMs onto B12
                    # Forecast.
                    for kCycle in DAW:
                        for k, t, dt in chrono.cycle(kCycle):  # noqa
                            X = Dyn.linear(x, t - dt, dt) @ X
                            x = Dyn(x, t - dt, dt)

                    # Assess forecast stats
                    if iteration == 0:
                        stats.assess(k, kObs, 'f', mu=x, Cov=X @ X.T)

                    # Observe.
                    Y = Obs.linear(x, t) @ X
                    xo = Obs(x, t)

                    # Analysis prep.
                    y = yy[kObs]  # Get current obs.
                    dy = Rm12 @ (y - xo)  # Transform obs space.
                    Y = Rm12 @ Y  # Transform obs space.
                    V, s, UT = svd0(Y.T)  # Decomp for lin-alg update comps.

                    # Post. cov (approx) of w,
                    # estimated at current iteration, raised to power.
                    Cow1 = (V * (pad0(s**2, Nx) + 1)**-1.0) @ V.T

                    # Compute analysis update.
                    grad = Y.T @ dy - w  # Cost function gradient
                    dw = Cow1 @ grad  # Gauss-Newton step
                    w += dw  # Step

                    if dw @ dw < self.wtol * Nx:
                        break

                # Assess (analysis) stats.
                final_increment = X @ dw
                stats.assess(k,
                             kObs,
                             'a',
                             mu=x + final_increment,
                             Cov=X @ Cow1 @ X.T)
                stats.iters[kObs] = iteration + 1

                # Final (smoothed) estimate at [kLag].
                x = x0 + B12 @ w
                X = B12

            # Slide/shift DAW by propagating smoothed ('s') state from [kLag].
            if -1 <= kLag < KObs:
                if kLag >= 0:
                    stats.assess(chrono.kkObs[kLag],
                                 kLag,
                                 's',
                                 mu=x,
                                 Cov=X @ Cow1 @ X.T)
                for k, t, dt in chrono.cycle(kLag + 1):
                    stats.assess(k - 1, None, 'u', mu=x, Cov=Y @ Y.T)
                    X = Dyn.linear(x, t - dt, dt) @ X
                    x = Dyn(x, t - dt, dt)

        stats.assess(k, KObs, 'us', mu=x, Cov=X @ Cow1 @ X.T)
Exemplo n.º 30
0
    def assimilate(self, HMM, xx, yy):
        # Unpack
        Dyn, Obs, chrono, X0, stats = \
            HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats
        R, N, N1 = HMM.Obs.noise.C, self.N, self.N-1

        # Init
        E = X0.sample(N)
        stats.assess(0, E=E)

        # Loop
        for k, kObs, t, dt in progbar(chrono.ticker):
            # Forecast
            E = Dyn(E, t-dt, dt)
            E = add_noise(E, dt, Dyn.noise, self.fnoise_treatm)

            # Analysis
            if kObs is not None:
                stats.assess(k, kObs, 'f', E=E)
                Eo = Obs(E, t)
                y  = yy[kObs]

                mu = np.mean(E, 0)
                A  = E - mu

                xo = np.mean(Eo, 0)
                Y  = Eo-xo
                dy = y - xo

                V, s, UT = svd0(Y @ R.sym_sqrt_inv.T)
                du       = UT @ (dy @ R.sym_sqrt_inv.T)
                def dgn_N(l1): return pad0((l1*s)**2, N) + N1

                # Adjust hyper-prior
                # xN_ = noise_level(self.xN,stats,chrono,N1,kObs,A,
                #                   locals().get('A_old',None))
                eN, cL = hyperprior_coeffs(s, N, self.xN, self.g)

                if self.dual:
                    # Make dual cost function (in terms of l1)
                    def pad_rk(arr): return pad0(arr, min(N, Obs.M))
                    def dgn_rk(l1): return pad_rk((l1*s)**2) + N1

                    def J(l1):
                        val = np.sum(du**2/dgn_rk(l1)) \
                            + eN/l1**2 \
                            + cL*np.log(l1**2)
                        return val

                    # Derivatives (not required with minimize_scalar):
                    def Jp(l1):
                        val = -2*l1 * np.sum(pad_rk(s**2) * du**2/dgn_rk(l1)**2) \
                            + -2*eN/l1**3 + 2*cL/l1
                        return val

                    def Jpp(l1):
                        val = 8*l1**2 * np.sum(pad_rk(s**4) * du**2/dgn_rk(l1)**3) \
                            + 6*eN/l1**4 + -2*cL/l1**2
                        return val
                    # Find inflation factor (optimize)
                    l1 = Newton_m(Jp, Jpp, 1.0)
                    # l1 = fmin_bfgs(J, x0=[1], gtol=1e-4, disp=0)
                    # l1 = minimize_scalar(J, bracket=(sqrt(prior_mode), 1e2),
                    #                      tol=1e-4).x

                else:
                    # Primal form, in a fully linearized version.
                    def za(w): return zeta_a(eN, cL, w)

                    def J(w): return \
                        .5*np.sum(((dy-w@Y)@R.sym_sqrt_inv.T)**2) + \
                        .5*N1*cL*np.log(eN + w@w)
                    # Derivatives (not required with fmin_bfgs):
                    def Jp(w): return [email protected]@(dy-w@Y) + w*za(w)
                    # Jpp   = lambda w:  [email protected]@Y.T + \
                    #     za(w)*(eye(N) - 2*np.outer(w,w)/(eN + w@w))
                    # Approx: no radial-angular cross-deriv:
                    # Jpp   = lambda w:  [email protected]@Y.T + za(w)*eye(N)

                    def nvrs(w):
                        # inverse of Jpp-approx
                        return (V * (pad0(s**2, N) + za(w)) ** -1.0) @ V.T
                    # Find w (optimize)
                    wa     = Newton_m(Jp, nvrs, zeros(N), is_inverted=True)
                    # wa   = Newton_m(Jp,Jpp ,zeros(N))
                    # wa   = fmin_bfgs(J,zeros(N),Jp,disp=0)
                    l1     = sqrt(N1/za(wa))

                # Uncomment to revert to ETKF
                # l1 = 1.0

                # Explicitly inflate prior
                # => formulae look different from `bib.bocquet2015expanding`.
                A *= l1
                Y *= l1

                # Compute sqrt update
                Pw = (V * dgn_N(l1)**(-1.0)) @ V.T
                w  = [email protected]@Y.T@Pw
                # For the anomalies:
                if not self.Hess:
                    # Regular ETKF (i.e. sym sqrt) update (with inflation)
                    T = (V * dgn_N(l1)**(-0.5)) @ V.T * sqrt(N1)
                    # = ([email protected]@Y.T/N1 + eye(N))**(-0.5)
                else:
                    # Also include angular-radial co-dependence.
                    # Note: denominator not squared coz
                    # unlike `bib.bocquet2015expanding` we have inflated Y.
                    Hw = [email protected]@Y.T/N1 + eye(N) - 2*np.outer(w, w)/(eN + w@w)
                    T  = funm_psd(Hw, lambda x: x**-.5)  # is there a sqrtm Woodbury?

                E = mu + w@A + T@A
                E = post_process(E, self.infl, self.rot)

                stats.infl[kObs] = l1
                stats.trHK[kObs] = (((l1*s)**2 + N1)**(-1.0)*s**2).sum()/HMM.Ny

            stats.assess(k, kObs, E=E)