Exemplo n.º 1
0
 def test_nimo(self):
     """ Test nimo step. Runs the step and makes sure
         that there is output data.
     """
     dp = DataParent(config=CONFFILE)
     dp.config['parentni']['filloutput'] = True
     step = dp.getobject('StepNIParent')
     step.config = dp.config
     do = step()
     self.assertIsInstance(do[0], DataParent)
Exemplo n.º 2
0
 def test_multi(self):
     """ Test pipeline with mimo and miso steps
     """
     dp = DataParent(config=CONFFILE)
     pipe = dp.getobject('PipeLine')
     dp.log.info('  ==== START MISO/MIMO PIPE ====')
     do = pipe([FITSFILE, FITSFILE],
               dp.config,
               pipemode='multi',
               force=True)
     dp.log.info('  ==== END MISO/MIMO PIPE ====')
     self.assertIsInstance(do, DataParent)
Exemplo n.º 3
0
 def test_single(self):
     """ Test pipeline with siso step only
     """
     dp = DataParent(config=CONFFILE)
     pipe = dp.getobject('PipeLine')
     dp.log.info('  ==== START SISO PIPE ====')
     do = pipe([FITSFILE, FITSFILE],
               dp.config,
               pipemode='single',
               force=True)
     dp.log.info('  ==== END SISO PIPE ====')
     self.assertIsInstance(do, DataParent)
Exemplo n.º 4
0
 def test_mimo(self):
     """ Test a mimo step. Runs the step and makes sure
         that the output data is as expected.
     """
     dp = DataParent(config=CONFFILE)
     df1 = dp.load(FITSFILE)
     df2 = dp.load(FITSFILE)
     step = dp.getobject('StepMOParent')
     head = df1.header.copy()
     img = df1.image.copy()
     do1, _do2 = step([df1, df2])
     self.assertEqual(np.sum(img - do1.image), 0)
     self.assertNotEqual(head, do1.header)
Exemplo n.º 5
0
 def test_siso(self):
     """ Test siso step. Runs the step and makes sure
         that the data is the same but that the header
         has changed.
     """
     dp = DataParent(config=CONFFILE)
     df = dp.load(FITSFILE)
     head = df.header.copy()
     img = df.image.copy()
     step = dp.getobject('StepParent')
     do = step(df)
     self.assertEqual(np.sum(img - do.image), 0)
     self.assertNotEqual(head, do.header)
Exemplo n.º 6
0
 def run(self):
     """ Runs the data reduction algorithm. The self.datain is run
         through the code, the result is in self.dataout.
     """
     ### Get redstep if it's not loaded
     if self.redstep == None:
         # Get the step
         datap = DataParent(config=self.config)
         self.redstep = datap.getobject(self.getarg('redstepname'))
     ### Group the input files
     # Setup datagroups, get keys and key formats
     datagroups = []
     groupkeys = self.getarg('groupkeys').split('|')
     groupkfmt = self.getarg('groupkfmt')
     if len(groupkfmt) == 0:
         groupkfmt = None
     else:
         groupkfmt = groupkfmt.split('|')
     # Loop over files
     for data in self.datain:
         groupind = 0
         # Loop over groups until group match found or end reached
         while groupind < len(datagroups):
             # Check if data fits group
             found = True
             gdata = datagroups[groupind][0]
             for keyi in range(len(groupkeys)):
                 # Get key from group and new data - format if needed
                 key = groupkeys[keyi]
                 dkey = data.getheadval(key, 'allheaders')
                 gkey = gdata.getheadval(key, 'allheaders')
                 if groupkfmt != None:
                     dkey = groupkfmt[keyi] % dkey
                     gkey = groupkfmt[keyi] % gkey
                 # Compare
                 if dkey != gkey:
                     found = False
             # Found -> add to group
             if found:
                 datagroups[groupind].append(data)
                 break
             # Not found -> increase group index
             groupind += 1
         # If not in any group -> make new group
         if groupind == len(datagroups):
             datagroups.append([
                 data,
             ])
     # info messages
     self.log.debug(" Found %d data groups" % len(datagroups))
     for groupind in range(len(datagroups)):
         group = datagroups[groupind]
         msg = "  Group %d len=%d" % (groupind, len(group))
         for key in groupkeys:
             msg += " %s = %s" % (key, group[0].getheadval(
                 key, 'allheaders'))
         self.log.debug(msg)
     ### Reduce input files - collect output files
     self.dataout = []
     # Make new variables for groupidkeys and groupoutputs
     groupidkeys = []
     groupoutputs = []
     # Loop over groups -> save output in self.dataout
     for groupi in range(len(datagroups)):
         group = datagroups[groupi]
         # Get fileidkeys to see if unchanged groups should be re-reduced
         fileidkey = self.getarg('fileidkey')
         if len(fileidkey):
             # Get fileidkeys for the current new group
             newkeys = [dat.getheadval(fileidkey) for dat in group]
             copykeys = ['x']
             # Search for fit in existing groups: fit is index
             fit = -1
             for fit in range(len(self.groupidkeys)):
                 # Make copy of new keys
                 copykeys = list(newkeys)
                 # For each key in group[fit]
                 for val in self.groupidkeys[fit]:
                     if val in copykeys:
                         # Remove key from copykeys if found
                         del copykeys[copykeys.index(val)]
                     else:
                         # Else: group[fit] does not match, go to next group
                         copykeys = ['x']  # if all have been removed
                         break
                 # Check if any values left in copykeys
                 if len(copykeys) == 0:
                     # No values left in copykeys, group[fit] is valid match
                     break
             # Any values left in copykeys -> no match found
             if len(copykeys):
                 fit = -1
                 self.log.debug('New datagroup # %d has no previous match' %
                                groupi)
             else:
                 self.log.debug(
                     'New datagroup # %d matches previous group # %d' %
                     (groupi, fit))
         else:
             fit = -1
         # Reduce the data
         if fit < 0:
             try:
                 dataout = self.redstep(group)
             except Exception as error:
                 self.log.warn(
                     'Step %s failed for group %d on with file %s . . .' %
                     (self.getarg('redstepname'), groupi,
                      group[0].filename))
                 self.log.warn('message = %s' % str(error) +
                               ' - skipping group')
                 self.log.warn('traceback = %s' % traceback.format_exc())
                 continue
             # Add groupoutputs and groupidkeys
             if len(fileidkey):
                 groupoutputs.append(dataout)
                 idkeys = [dat.getheadval(fileidkey) for dat in group]
                 groupidkeys.append(idkeys)
             # Save output if requested
             if self.getarg('saveoutput'):
                 if issubclass(dataout.__class__, DataParent):
                     data.save()
                 else:
                     for data in dataout:
                         data.save()
         else:
             groupoutputs.append(self.groupoutputs[fit])
             groupidkeys.append(self.groupidkeys[fit])
             dataout = self.groupoutputs[fit]
         # add output to dataout
         if issubclass(dataout.__class__, DataParent):
             self.dataout.append(dataout)
         else:
             for data in dataout:
                 self.dataout.append(dataout)
     # Copy groupidkeys and groupoutputs
     self.groupoutputs = groupoutputs
     self.groupidkeys = groupidkeys
     # Set procname to redstep.procname
     self.procname = self.redstep.procname