Exemplo n.º 1
0
def get_boxes(opts, outs, source_size, num=5, threshold=0.1):
    assert box_constructor is not None, '`get_boxes` requires `darkflow`.'
    h, w = source_size
    boxes = [[] for _ in xrange(opts['classes'])]
    opts['num'] = num
    opts['thresh'] = threshold
    opts['out_size'] = list(outs[0].shape)
    results = box_constructor(opts, outs[0].copy())
    for b in results:
        max_idx = np.argmax(b.probs)
        max_score = b.probs[max_idx]
        if max_score > threshold:
            x1 = int((b.x - b.w / 2) * w)
            y1 = int((b.y - b.h / 2) * h)
            x2 = int((b.x + b.w / 2) * w)
            y2 = int((b.y + b.h / 2) * h)
            if x1 < 0:
                x1 = 0
            if x2 > w - 1:
                x2 = w - 1
            if y1 < 0:
                y1 = 0
            if y2 > h - 1:
                y2 = h - 1
            boxes[max_idx].append((x1, y1, x2, y2, max_score))
    for i in xrange(opts['classes']):
        boxes[i] = np.asarray(boxes[i], dtype=np.float32)
    return boxes
Exemplo n.º 2
0
def findboxes(self, net_out):
    # meta
    meta = self.meta
    boxes = list()

    boxes = box_constructor(meta, net_out)
    return boxes
Exemplo n.º 3
0
def yolo_boxes(opts, outs, source_size):
    assert box_constructor is not None, '`get_boxes` requires `darkflow`.'
    h, w = source_size
    threshold = opts['thresh']
    boxes = [[] for _ in xrange(opts['classes'])]
    results = box_constructor(opts, outs[0].copy())
    for b in results:
        max_indx = np.argmax(b.probs)
        max_prob = b.probs[max_indx]
        if max_prob > threshold:
            left = int((b.x - b.w / 2) * w)
            right = int((b.x + b.w / 2) * w)
            top = int((b.y - b.h / 2) * h)
            bot = int((b.y + b.h / 2) * h)
            if left < 0:
                left = 0
            if right > w - 1:
                right = w - 1
            if top < 0:
                top = 0
            if bot > h - 1:
                bot = h - 1
            boxes[max_indx].append((left, top, right, bot, max_prob))
    for i in xrange(opts['classes']):
        boxes[i] = np.asarray(boxes[i], dtype=np.float32)
    return boxes
Exemplo n.º 4
0
def getResults(requestData):

    with open(os.path.join("./built_graph/yolov2.meta"), 'r') as fp:
        meta = json.load(fp)
    imgdata = base64.b64decode(requestData["data"])
    data = Image.open(io.BytesIO(imgdata))

    image_np = cv2.cvtColor(np.array(data), cv2.COLOR_BGR2RGB)

    h, w, c = meta['inp_size']

    imsz = cv2.resize(image_np , (w, h))
    imsz = imsz / 255.
    imsz = imsz[:,:,::-1]
    image_np_expanded = np.expand_dims(imsz, 0)
    [h, w] = image_np.shape[:2]

    headers = {'Accept': 'application/octet-stream',
            'content-type': 'application/json'}
    start_time1 = time.time()
    r = requests.post(url = URL , data = json.dumps(requestData), headers = headers)
    elapsed_time1 = time.time() - start_time
    print("Time to get the results : ", elapsed_time1)
    data = r.json()
    data1 = ast.literal_eval(data)

    
    out1 = data1["detection"]
    
    boxes = box_constructor(meta, np.array(out1, dtype=np.float32))
    
    #print(boxes)   
    boxesInfo = list()
    #resultsForJSON = []
    #colors = meta['colors']
    threshold = meta['thresh']

    for b in boxes:
        max_indx = np.argmax(b.probs)
        max_prob = b.probs[max_indx]
        label = meta['labels'][max_indx]
        if max_prob > threshold:
            left  = int ((b.x - b.w/2.) * w)
            right = int ((b.x + b.w/2.) * w)
            top   = int ((b.y - b.h/2.) * h)
            bot   = int ((b.y + b.h/2.) * h)
            if left  < 0    :  left = 0
            if right > w - 1: right = w - 1
            if top   < 0    :   top = 0
            if bot   > h - 1:   bot = h - 1
            mess = '{}'.format(label)
            boxResults = (left, right, top, bot, mess, max_indx, max_prob)
            print(boxResults)
Exemplo n.º 5
0
    def detect_frame(self, img):
        # print("[Yitao] in yolo.py:detect_frame() is called...!")
        # return self.tfnet.return_predict(img)

        # Yitao-TLS-Begin
        h, w, _ = img.shape
        im = resize_input(img)
        this_inp = np.expand_dims(im, 0)

        request = predict_pb2.PredictRequest()
        request.model_spec.name = 'darkflow_yolo'
        request.model_spec.signature_name = 'predict_images'
        request.inputs['input'].CopyFrom(
            tf.contrib.util.make_tensor_proto(this_inp,
                                              dtype=np.float32,
                                              shape=this_inp.shape))

        result = self.stub.Predict(request, 10.0)  # 10 secs timeout
        tmp = result.outputs['output']
        tt = tensor_util.MakeNdarray(tmp)[0]
        # print(tt[:,0,0])
        # print(tt[:,0,1])

        meta = {
            'labels': [
                'person', 'bicycle', 'car', 'motorbike', 'aeroplane', 'bus',
                'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
                'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
                'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
                'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
                'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
                'kite', 'baseball bat', 'baseball glove', 'skateboard',
                'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
                'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
                'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
                'donut', 'cake', 'chair', 'sofa', 'pottedplant', 'bed',
                'diningtable', 'toilet', 'tvmonitor', 'laptop', 'mouse',
                'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
                'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
                'scissors', 'teddy bear', 'hair drier', 'toothbrush'
            ],
            u'jitter':
            0.3,
            u'anchors': [
                0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282,
                3.52778, 9.77052, 9.16828
            ],
            u'random':
            1,
            'colors': [(254, 254, 254), (254, 254, 127), (254, 254, 0),
                       (254, 254, -127), (254, 254, -254), (254, 127, 254),
                       (254, 127, 127), (254, 127, 0), (254, 127, -127),
                       (254, 127, -254), (254, 0, 254), (254, 0, 127),
                       (254, 0, 0), (254, 0, -127), (254, 0, -254),
                       (254, -127, 254), (254, -127, 127), (254, -127, 0),
                       (254, -127, -127), (254, -127, -254), (254, -254, 254),
                       (254, -254, 127), (254, -254, 0), (254, -254, -127),
                       (254, -254, -254), (127, 254, 254), (127, 254, 127),
                       (127, 254, 0), (127, 254, -127), (127, 254, -254),
                       (127, 127, 254), (127, 127, 127), (127, 127, 0),
                       (127, 127, -127), (127, 127, -254), (127, 0, 254),
                       (127, 0, 127), (127, 0, 0), (127, 0, -127),
                       (127, 0, -254), (127, -127, 254), (127, -127, 127),
                       (127, -127, 0), (127, -127, -127), (127, -127, -254),
                       (127, -254, 254), (127, -254, 127), (127, -254, 0),
                       (127, -254, -127), (127, -254, -254), (0, 254, 254),
                       (0, 254, 127), (0, 254, 0), (0, 254, -127),
                       (0, 254, -254), (0, 127, 254),
                       (0, 127, 127), (0, 127, 0), (0, 127, -127),
                       (0, 127, -254), (0, 0, 254), (0, 0, 127), (0, 0, 0),
                       (0, 0, -127), (0, 0, -254), (0, -127, 254),
                       (0, -127, 127), (0, -127, 0), (0, -127, -127),
                       (0, -127, -254), (0, -254, 254), (0, -254, 127),
                       (0, -254, 0), (0, -254, -127), (0, -254, -254),
                       (-127, 254, 254), (-127, 254, 127), (-127, 254, 0),
                       (-127, 254, -127), (-127, 254, -254)],
            u'num':
            5,
            u'thresh':
            self.threshold,
            'inp_size': [608, 608, 3],
            u'bias_match':
            1,
            'out_size': [19, 19, 425],
            'model':
            '/home/yitao/Documents/fun-project/darknet-repo/darkflow/cfg/yolo.cfg',
            u'absolute':
            1,
            'name':
            'yolo',
            u'coord_scale':
            1,
            u'rescore':
            1,
            u'class_scale':
            1,
            u'noobject_scale':
            1,
            u'object_scale':
            5,
            u'classes':
            80,
            u'coords':
            4,
            u'softmax':
            1,
            'net': {
                u'hue': 0.1,
                u'saturation': 1.5,
                u'angle': 0,
                u'decay': 0.0005,
                u'learning_rate': 0.001,
                u'scales': u'.1,.1',
                u'batch': 1,
                u'height': 608,
                u'channels': 3,
                u'width': 608,
                u'subdivisions': 1,
                u'burn_in': 1000,
                u'policy': u'steps',
                u'max_batches': 500200,
                u'steps': u'400000,450000',
                'type': u'[net]',
                u'momentum': 0.9,
                u'exposure': 1.5
            },
            'type':
            u'[region]'
        }

        boxes = list()
        boxes = box_constructor(meta, tt)

        # for box in boxes:
        # print("(%s, %s, %s, %s) with class_num = %s, probs = %s" % (str(box.x), str(box.y), str(box.w), str(box.h), str(box.class_num), str(box.probs)))

        boxesInfo = list()
        for box in boxes:
            tmpBox = process_box(box, h, w, self.threshold, meta)
            if tmpBox is None:
                continue
            boxesInfo.append({
                "label": tmpBox[4],
                "confidence": tmpBox[6],
                "topleft": {
                    "x": tmpBox[0],
                    "y": tmpBox[2]
                },
                "bottomright": {
                    "x": tmpBox[1],
                    "y": tmpBox[3]
                }
            })

        return boxesInfo
def findboxes_meta(meta, net_out):
    boxes = list()
    boxes = box_constructor(meta, net_out)
    return boxes