Exemplo n.º 1
0
    # Test parameters
    conf_thresh = 0.05
    nms_thresh = 0.4
    match_thresh = 0.5
    iou_thresh = 0.5
    im_width = 640
    im_height = 480

    # Specify which gpus to use
    torch.manual_seed(seed)
    if use_cuda:
        os.environ['CUDA_VISIBLE_DEVICES'] = gpus
        torch.cuda.manual_seed(seed)

    # Specifiy the model and the loss
    model = Darknet(cfgfile)
    region_loss = model.loss

    # Model settings
    # model.load_weights(weightfile)
    model.load_weights_until_last(weightfile)
    model.print_network()
    model.seen = 0
    region_loss.iter = model.iter
    region_loss.seen = model.seen
    processed_batches = model.seen // batch_size
    init_width = model.width
    init_height = model.height
    init_epoch = model.seen // nsamples

    # Variable to save
Exemplo n.º 2
0
def valid(datacfg, cfgfile, weightfile):
    def truths_length(truths):
        for i in range(50):
            if truths[i][1] == 0:
                return i

    # Parse data configuration files
    data_options = read_data_cfg(datacfg)
    valid_images = data_options['valid']
    meshname = data_options['mesh']
    name = data_options['name']
    im_width = int(data_options['im_width'])
    im_height = int(data_options['im_height'])
    fx = float(data_options['fx'])
    fy = float(data_options['fy'])
    u0 = float(data_options['u0'])
    v0 = float(data_options['v0'])

    # Parse net configuration file
    net_options = parse_cfg(cfgfile)[0]
    loss_options = parse_cfg(cfgfile)[-1]
    conf_thresh = float(net_options['conf_thresh'])
    num_keypoints = int(net_options['num_keypoints'])
    num_classes = int(loss_options['classes'])
    num_anchors = int(loss_options['num'])
    anchors = [float(anchor) for anchor in loss_options['anchors'].split(',')]

    # Read object model information, get 3D bounding box corners, get intrinsics
    mesh = MeshPly(meshname)
    vertices = np.c_[np.array(mesh.vertices),
                     np.ones((len(mesh.vertices), 1))].transpose()
    corners3D = get_3D_corners(vertices)
    diam = float(data_options['diam'])
    intrinsic_calibration = get_camera_intrinsic(u0, v0, fx,
                                                 fy)  # camera params

    # Network I/O params
    num_labels = 2 * num_keypoints + 3  # +2 for width, height, +1 for object class
    errs_2d = []  # to save
    with open(valid_images) as fp:  # validation file names
        tmp_files = fp.readlines()
        valid_files = [item.rstrip() for item in tmp_files]

    # Compute-related Parameters
    use_cuda = True  # whether to use cuda or no
    kwargs = {'num_workers': 4, 'pin_memory': True}  # number of workers etc.

    # Specicy model, load pretrained weights, pass to GPU and set the module in evaluation mode
    model = Darknet(cfgfile)
    model.load_weights(weightfile)
    model.cuda()
    model.eval()

    # Get the dataloader for the test dataset
    valid_dataset = dataset_multi.listDataset(valid_images,
                                              shape=(model.width,
                                                     model.height),
                                              shuffle=False,
                                              objclass=name,
                                              transform=transforms.Compose([
                                                  transforms.ToTensor(),
                                              ]))
    test_loader = torch.utils.data.DataLoader(valid_dataset,
                                              batch_size=1,
                                              shuffle=False,
                                              **kwargs)

    # Iterate through test batches (Batch size for test data is 1)
    logging('Testing {}...'.format(name))
    for batch_idx, (data, target) in enumerate(test_loader):

        t1 = time.time()
        # Pass data to GPU
        if use_cuda:
            data = data.cuda()
            # target = target.cuda()

        # Wrap tensors in Variable class, set volatile=True for inference mode and to use minimal memory during inference
        data = Variable(data, volatile=True)
        t2 = time.time()

        # Forward pass
        output = model(data).data
        t3 = time.time()

        # Using confidence threshold, eliminate low-confidence predictions
        trgt = target[0].view(-1, num_labels)
        all_boxes = get_multi_region_boxes(output,
                                           conf_thresh,
                                           num_classes,
                                           num_keypoints,
                                           anchors,
                                           num_anchors,
                                           int(trgt[0][0]),
                                           only_objectness=0)
        t4 = time.time()

        # Iterate through all images in the batch
        for i in range(output.size(0)):

            # For each image, get all the predictions
            boxes = all_boxes[i]

            # For each image, get all the targets (for multiple object pose estimation, there might be more than 1 target per image)
            truths = target[i].view(-1, num_labels)

            # Get how many object are present in the scene
            num_gts = truths_length(truths)

            # Iterate through each ground-truth object
            for k in range(num_gts):
                box_gt = list()
                for j in range(1, num_labels):
                    box_gt.append(truths[k][j])
                box_gt.extend([1.0, 1.0])
                box_gt.append(truths[k][0])

                # If the prediction has the highest confidence, choose it as our prediction
                best_conf_est = -sys.maxsize
                for j in range(len(boxes)):
                    if (boxes[j][2 * num_keypoints] >
                            best_conf_est) and (boxes[j][2 * num_keypoints + 2]
                                                == int(truths[k][0])):
                        best_conf_est = boxes[j][2 * num_keypoints]
                        box_pr = boxes[j]
                        match = corner_confidence(
                            box_gt[:2 * num_keypoints],
                            torch.FloatTensor(boxes[j][:2 * num_keypoints]))

                # Denormalize the corner predictions
                corners2D_gt = np.array(np.reshape(box_gt[:2 * num_keypoints],
                                                   [-1, 2]),
                                        dtype='float32')
                corners2D_pr = np.array(np.reshape(box_pr[:2 * num_keypoints],
                                                   [-1, 2]),
                                        dtype='float32')
                corners2D_gt[:, 0] = corners2D_gt[:, 0] * im_width
                corners2D_gt[:, 1] = corners2D_gt[:, 1] * im_height
                corners2D_pr[:, 0] = corners2D_pr[:, 0] * im_width
                corners2D_pr[:, 1] = corners2D_pr[:, 1] * im_height
                corners2D_gt_corrected = fix_corner_order(
                    corners2D_gt)  # Fix the order of corners

                # Compute [R|t] by pnp
                objpoints3D = np.array(np.transpose(
                    np.concatenate((np.zeros((3, 1)), corners3D[:3, :]),
                                   axis=1)),
                                       dtype='float32')
                K = np.array(intrinsic_calibration, dtype='float32')
                R_gt, t_gt = pnp(objpoints3D, corners2D_gt_corrected, K)
                R_pr, t_pr = pnp(objpoints3D, corners2D_pr, K)

                # Compute pixel error
                Rt_gt = np.concatenate((R_gt, t_gt), axis=1)
                Rt_pr = np.concatenate((R_pr, t_pr), axis=1)
                proj_2d_gt = compute_projection(vertices, Rt_gt,
                                                intrinsic_calibration)
                proj_2d_pred = compute_projection(vertices, Rt_pr,
                                                  intrinsic_calibration)
                proj_corners_gt = np.transpose(
                    compute_projection(corners3D, Rt_gt,
                                       intrinsic_calibration))
                proj_corners_pr = np.transpose(
                    compute_projection(corners3D, Rt_pr,
                                       intrinsic_calibration))
                norm = np.linalg.norm(proj_2d_gt - proj_2d_pred, axis=0)
                pixel_dist = np.mean(norm)
                errs_2d.append(pixel_dist)

        t5 = time.time()

    # Compute 2D projection score
    eps = 1e-5
    for px_threshold in [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]:
        acc = len(np.where(np.array(errs_2d) <= px_threshold)[0]) * 100. / (
            len(errs_2d) + eps)
        # Print test statistics
        logging('   Acc using {} px 2D Projection = {:.2f}%'.format(
            px_threshold, acc))
Exemplo n.º 3
0
def valid(datacfg, cfgfile, weightfile, conf_th):
    def truths_length(truths):
        for i in range(50):
            if truths[i][1] == 0:
                return i

    # Parse configuration files
    options = read_data_cfg(datacfg)
    valid_images = options['valid']
    meshname = options['mesh']
    name = options['name']
    prefix = 'results'
    # Read object model information, get 3D bounding box corners
    mesh = MeshPly(meshname)
    vertices = np.c_[np.array(mesh.vertices),
                     np.ones((len(mesh.vertices), 1))].transpose()
    corners3D = get_3D_corners(vertices)
    diam = float(options['diam'])

    # Read intrinsic camera parameters
    internal_calibration = get_camera_intrinsic()

    # Get validation file names
    with open(valid_images) as fp:
        tmp_files = fp.readlines()
        valid_files = [item.rstrip() for item in tmp_files]

    # Specicy model, load pretrained weights, pass to GPU and set the module in evaluation mode
    model = Darknet(cfgfile)
    model.load_weights(weightfile)
    model.cuda()
    model.eval()

    test_width = 544
    test_height = 544

    # Get the parser for the test dataset
    valid_dataset = dataset_multi.listDataset(valid_images,
                                              shape=(test_width, test_height),
                                              shuffle=False,
                                              objclass=name,
                                              transform=transforms.Compose([
                                                  transforms.ToTensor(),
                                              ]))
    valid_batchsize = 1

    # Specify the number of workers for multiple processing, get the dataloader for the test dataset
    kwargs = {'num_workers': 4, 'pin_memory': True}
    test_loader = torch.utils.data.DataLoader(valid_dataset,
                                              batch_size=valid_batchsize,
                                              shuffle=False,
                                              **kwargs)

    # Parameters
    use_cuda = True
    num_classes = 2
    anchors = [
        1.4820, 2.2412, 2.0501, 3.1265, 2.3946, 4.6891, 3.1018, 3.9910, 3.4879,
        5.8851
    ]
    num_anchors = 5
    eps = 1e-5
    conf_thresh = conf_th
    iou_thresh = 0.5

    # Parameters to save
    errs_2d = []
    edges = [[1, 2], [1, 3], [1, 5], [2, 4], [2, 6], [3, 4], [3, 7], [4, 8],
             [5, 6], [5, 7], [6, 8], [7, 8]]
    edges_corners = [[0, 1], [0, 2], [0, 4], [1, 3], [1, 5], [2, 3], [2, 6],
                     [3, 7], [4, 5], [4, 6], [5, 7], [6, 7]]

    # Iterate through test batches (Batch size for test data is 1)
    logging('Testing {}...'.format(name))
    for batch_idx, (data, target) in enumerate(test_loader):

        t1 = time.time()
        # Pass data to GPU
        if use_cuda:
            data = data.cuda()
            # target = target.cuda()

        # Wrap tensors in Variable class, set volatile=True for inference mode and to use minimal memory during inference
        data = Variable(data, volatile=True)
        t2 = time.time()

        # Forward pass
        output = model(data).data
        t3 = time.time()

        # Using confidence threshold, eliminate low-confidence predictions
        trgt = target[0].view(-1, 21)
        all_boxes = get_corresponding_region_boxes(output,
                                                   conf_thresh,
                                                   num_classes,
                                                   anchors,
                                                   num_anchors,
                                                   int(trgt[0][0]),
                                                   only_objectness=0)
        t4 = time.time()

        # Iterate through all images in the batch
        for i in range(output.size(0)):

            # For each image, get all the predictions
            boxes = all_boxes[i]

            # For each image, get all the targets (for multiple object pose estimation, there might be more than 1 target per image)
            truths = target[i].view(-1, 21)
            if debug_multi:
                print(type(truth))

            # Get how many object are present in the scene
            num_gts = truths_length(truths)
            if debug_multi:
                print('numbers of ground truth: ' + str(num_gts))

            # Iterate through each ground-truth object
            for k in range(num_gts):
                if debug_multi:
                    print('object class in label is: ' + str(truths[k][0]))

                box_gt = [
                    truths[k][1], truths[k][2], truths[k][3], truths[k][4],
                    truths[k][5], truths[k][6], truths[k][7], truths[k][8],
                    truths[k][9], truths[k][10], truths[k][11], truths[k][12],
                    truths[k][13], truths[k][14], truths[k][15], truths[k][16],
                    truths[k][17], truths[k][18], 1.0, 1.0, truths[k][0]
                ]
                best_conf_est = -1

                # If the prediction has the highest confidence, choose it as our prediction
                for j in range(len(boxes)):
                    if (boxes[j][18] > best_conf_est) and (boxes[j][20] == int(
                            truths[k][0])):
                        best_conf_est = boxes[j][18]
                        box_pr = boxes[j]
                        bb2d_gt = get_2d_bb(box_gt[:18], output.size(3))
                        bb2d_pr = get_2d_bb(box_pr[:18], output.size(3))
                        iou = bbox_iou(bb2d_gt, bb2d_pr)
                        match = corner_confidence9(
                            box_gt[:18], torch.FloatTensor(boxes[j][:18]))

                # Denormalize the corner predictions
                corners2D_gt = np.array(np.reshape(box_gt[:18], [9, 2]),
                                        dtype='float32')
                corners2D_pr = np.array(np.reshape(box_pr[:18], [9, 2]),
                                        dtype='float32')
                corners2D_gt[:, 0] = corners2D_gt[:, 0] * 1280
                corners2D_gt[:, 1] = corners2D_gt[:, 1] * 720
                corners2D_pr[:, 0] = corners2D_pr[:, 0] * 1280
                corners2D_pr[:, 1] = corners2D_pr[:, 1] * 720
                #corners2D_gt_corrected = fix_corner_order(corners2D_gt) # Fix the order of corners
                # don't fix corner since the order is already correct
                corners2D_gt_corrected = corners2D_gt

                if debug_multi:
                    print('2d corners ground truth: ')
                    print(type(corners2D_gt_corrected))
                    print(corners2D_gt_corrected)

                # Compute [R|t] by pnp
                objpoints3D = np.array(np.transpose(
                    np.concatenate((np.zeros((3, 1)), corners3D[:3, :]),
                                   axis=1)),
                                       dtype='float32')
                # make correction to 3D points for class 2 & 3 (i.e. upperPortRed and uppoerPortBlue)
                correspondingclass = boxes[j][20]
                if (correspondingclass == 2 or correspondingclass == 3):
                    x_min_3d = 0
                    x_max_3d = 1.2192
                    y_min_3d = 0
                    y_max_3d = 1.1176
                    z_min_3d = 0
                    z_max_3d = 0.003302
                    centroid = [(x_min_3d + x_max_3d) / 2,
                                (y_min_3d + y_max_3d) / 2,
                                (z_min_3d + z_max_3d) / 2]

                    objpoints3D = np.array([centroid,\
                    [ x_min_3d, y_min_3d, z_min_3d],\
                    [ x_min_3d, y_min_3d, z_max_3d],\
                    [ x_min_3d, y_max_3d, z_min_3d],\
                    [ x_min_3d, y_max_3d, z_max_3d],\
                    [ x_max_3d, y_min_3d, z_min_3d],\
                    [ x_max_3d, y_min_3d, z_max_3d],\
                    [ x_max_3d, y_max_3d, z_min_3d],\
                    [ x_max_3d, y_max_3d, z_max_3d]])

                K = np.array(internal_calibration, dtype='float32')
                _, R_gt, t_gt = pnp(objpoints3D, corners2D_gt_corrected, K)
                _, R_pr, t_pr = pnp(objpoints3D, corners2D_pr, K)

                # Compute pixel error
                Rt_gt = np.concatenate((R_gt, t_gt), axis=1)
                Rt_pr = np.concatenate((R_pr, t_pr), axis=1)
                proj_2d_gt = compute_projection(vertices, Rt_gt,
                                                internal_calibration)
                proj_2d_pred = compute_projection(vertices, Rt_pr,
                                                  internal_calibration)
                proj_corners_gt = np.transpose(
                    compute_projection(corners3D, Rt_gt, internal_calibration))
                proj_corners_pr = np.transpose(
                    compute_projection(corners3D, Rt_pr, internal_calibration))
                norm = np.linalg.norm(proj_2d_gt - proj_2d_pred, axis=0)
                pixel_dist = np.mean(norm)
                errs_2d.append(pixel_dist)

        t5 = time.time()

    # Compute 2D projection score
    for px_threshold in [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]:
        acc = len(np.where(np.array(errs_2d) <= px_threshold)[0]) * 100. / (
            len(errs_2d) + eps)
        # Print test statistics
        logging('   Acc using {} px 2D Projection = {:.2f}%'.format(
            px_threshold, acc))
Exemplo n.º 4
0
    img = cv2.line(img, points[3], points[7], rgb, thickness)
    img = cv2.line(img, points[7], points[6], rgb, thickness)
    #img = cv2.rectangle(img, (x1,y1), (x2,y2), rgb, 1)
    if savename:
        print("save plot results to %s" % savename)
        cv2.imwrite(savename, img)
    return img


if __name__ == '__main__':
    #datacfg = 'cfg/ape.data'
    modelcfg = 'multi_obj_pose_estimation/cfg/yolo-pose-multi.cfg'
    weightfile = '../Assets/trained/multi.weights'

    #模型初始化
    model = Darknet(modelcfg)
    model.load_weights(weightfile)
    model = model.cuda()
    model.eval()

    #加载模型用
    net_options = parse_cfg(modelcfg)[0]
    loss_options = parse_cfg(modelcfg)[-1]

    conf_thresh = float(net_options['conf_thresh'])
    num_keypoints = int(net_options['num_keypoints'])
    num_classes = int(loss_options['classes'])
    num_anchors = int(loss_options['num'])
    anchors = [float(anchor) for anchor in loss_options['anchors'].split(',')]
    test_width = 416
    test_height = 416
Exemplo n.º 5
0
    scales = [0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1]
    best_acc = -1

    # Test parameters
    conf_thresh = 0.05
    nms_thresh = 0.4
    match_thresh = 0.5
    iou_thresh = 0.5
    im_width = 640
    im_height = 480

    # Specify which gpus to use
    torch.manual_seed(seed)

    # Specifiy the model and the loss
    model = Darknet(cfgfile)
    region_loss = model.loss

    # Model settings
    # model.load_weights(weightfile)
    # Model settings
    if pre:
        model.load_weights_until_last(weightfile)
        #max_epochs    = 200
        model.print_network()
    else:
        #model.print_network()
        model.load_weights(weightfile)
        #pass
    model.seen = 0
    region_loss.iter = model.iter
Exemplo n.º 6
0
def test(datacfg, cfgfile, weightfile, imgfile):

    # ******************************************#
    #           PARAMETERS PREPARATION          #
    # ******************************************#

    #parse configuration files
    options     = read_data_cfg(datacfg)
    meshname    = options['mesh']
    name        = options['name'] 

    #Parameters for the network
    seed        = int(time.time())
    gpus        = '0'       # define gpus to use
    test_width  = 544       # define test image size
    test_height = 544
    torch.manual_seed(seed) # seed torch random
    use_cuda    = True
    if use_cuda:
        os.environ['CUDA_VISIBLE_DEVICES'] = gpus
        torch.cuda.manual_seed(seed)    # seed cuda random
    conf_thresh = 0.1


    # Read object 3D model, get 3D Bounding box corners
    mesh        = MeshPly(meshname)
    vertices    = np.c_[np.array(mesh.vertices), np.ones((len(mesh.vertices), 1))].transpose()
    corners3D   = get_3D_corners(vertices)
    diam        = float(options['diam'])

    # now configure camera intrinsics
    internal_calibration = get_camera_intrinsic()

    # ******************************************#
    #   NETWORK CREATION                        #
    # ******************************************#

    # Create the network based on cfg file
    model = Darknet(cfgfile)
    model.print_network()
    model.load_weights(weightfile)
    # Pass the model to GPU
    if use_cuda:
        # model = model.cuda() 
        model = torch.nn.DataParallel(model, device_ids=[0]).cuda() # Multiple GPU parallelism
    model.eval()

    num_classes   = model.module.num_classes
    anchors       = model.module.anchors
    num_anchors   = model.module.num_anchors

    # ******************************************#
    #   INPUT IMAGE PREPARATION FOR NN          #
    # ******************************************#

    # Now prepare image: convert to RGB, resize, transform to Tensor
    # use cuda, 
    img = Image.open(imgfile).convert('RGB')
    ori_size = img.size     # store original size
    img = img.resize((test_width, test_height))
    t1 = time.time()
    img = transforms.Compose([transforms.ToTensor(),])(img)#.float()
    img = Variable(img, requires_grad = True)
    img = img.unsqueeze(0)  # add a fake batch dimension
    img = img.cuda()

    # ******************************************#
    #   PASS IT TO NETWORK AND GET PREDICTION   #
    # ******************************************#

    # Forward pass
    output = model(img).data
    #print("Output Size: {}".format(output.size(0)))
    t2 = time.time()


    # Reload Original img
    img = cv2.imread(imgfile) 



    for k in range(num_classes):
        all_boxes = get_corresponding_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors, k, only_objectness=0)    
        t4 = time.time()

        for i in range(output.size(0)):

            # For each image, get all the predictions
            boxes   = all_boxes[i]
            best_conf_est = -1

            # If the prediction has the highest confidence, choose it as our prediction
            for j in range(len(boxes)):
                if (boxes[j][18] > best_conf_est) and (boxes[j][20] == k):
                    best_conf_est = boxes[j][18]
                    box_pr        = boxes[j]
                    #bb2d_gt       = get_2d_bb(box_gt[:18], output.size(3))
                    bb2d_pr       = get_2d_bb(box_pr[:18], output.size(3))
                    #for a,b in zip(bb2d_gt, bb2d_pr):
                    #    print(type(a),type(b))
                    #iou           = bbox_iou(bb2d_gt, bb2d_pr)
                    #match         = corner_confidence9(box_gt[:18], torch.FloatTensor(boxes[j][:18]))

            corners2D_pr = np.array(np.reshape(box_pr[:18], [9, 2]), dtype='float32')
            corners2D_pr[:, 0] = corners2D_pr[:, 0] * ori_size[0]  # Width
            corners2D_pr[:, 1] = corners2D_pr[:, 1] * ori_size[1]  # Heightt
            t3 = time.time()

            # draw each predicted 2D point
            for v, (x,y) in enumerate(corners2D_pr):
                # get colors to draw the lines
                col1 = 28*v
                col2 = 255 - (28*v)
                col3 = np.random.randint(0,256)
                cv2.circle(img, (x,y), 3, (col1,col2,col3), -1)
                cv2.putText(img, str(v), (int(x) + 5, int(y) + 5),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (col1, col2, col3), 1)

            # Get each predicted point and the centroid
            p1 = corners2D_pr[1]
            p2 = corners2D_pr[2]
            p3 = corners2D_pr[3]
            p4 = corners2D_pr[4]
            p5 = corners2D_pr[5]
            p6 = corners2D_pr[6]
            p7 = corners2D_pr[7]
            p8 = corners2D_pr[8]
            center = corners2D_pr[0] 

            # Draw cube lines around detected object
            # draw front face
            line_point = 3
            cv2.line(img,(p1[0],p1[1]),(p2[0],p2[1]), (0,255,0),line_point)
            cv2.line(img,(p2[0],p2[1]),(p4[0],p4[1]), (0,255,0),line_point)
            cv2.line(img,(p4[0],p4[1]),(p3[0],p3[1]), (0,255,0),line_point)
            cv2.line(img,(p3[0],p3[1]),(p1[0],p1[1]), (0,255,0),line_point)
            
            # draw back face
            cv2.line(img,(p5[0],p5[1]),(p6[0],p6[1]), (0,255,0),line_point)
            cv2.line(img,(p7[0],p7[1]),(p8[0],p8[1]), (0,255,0),line_point)
            cv2.line(img,(p6[0],p6[1]),(p8[0],p8[1]), (0,255,0),line_point)
            cv2.line(img,(p5[0],p5[1]),(p7[0],p7[1]), (0,255,0),line_point)

            # draw right face
            cv2.line(img,(p2[0],p2[1]),(p6[0],p6[1]), (0,255,0),line_point)
            cv2.line(img,(p1[0],p1[1]),(p5[0],p5[1]), (0,255,0),line_point)
            
            # draw left face
            cv2.line(img,(p3[0],p3[1]),(p7[0],p7[1]), (0,255,0),line_point)
            cv2.line(img,(p4[0],p4[1]),(p8[0],p8[1]), (0,255,0),line_point)


    # create a window to display image
    wname = "Prediction"
    cv2.namedWindow(wname)
    # Show the image and wait key press
    cv2.imshow(wname, img)
    cv2.waitKey()

    print(output.shape)