Exemplo n.º 1
0
def test_make_grouping_by_attr_tuple(tuple_grouping_size):
    int_grouping, size = tuple_grouping_size
    letter_grouping, source = make_grouping_attr_source(int_grouping)
    result = make_grouping_by_attr(letter_grouping, source)
    flat_props = flatten_grouping(letter_grouping)
    expected = tuple(getattr(source, p) for p in flat_props)
    assert expected == result
Exemplo n.º 2
0
def _get_arg_input_state_dependencies(all_inputs):
    input_groupings = OrderedDict()
    input_deps = []
    state_deps = []

    # Collect input groupings
    for name, val in all_inputs.items():
        if isinstance(val, Input):
            grouping = val.dependencies()
            flat_dependencies = val.flat_dependencies()
        else:
            flat_dependencies = [
                d.dependencies() for d in flatten_grouping(val)
            ]
            if flat_dependencies and isinstance(flat_dependencies[0],
                                                Input_dash):
                grouping = val
            else:
                continue
        slc = slice(len(input_deps), len(input_deps) + len(flat_dependencies))
        input_groupings[name] = (grouping, slc)
        input_deps.extend(flat_dependencies)

    # Process state
    num_inputs = len(input_deps)
    for name, val in all_inputs.items():
        if isinstance(val, State):
            grouping = val.dependencies()
            flat_dependencies = val.flat_dependencies()
        else:
            flat_dependencies = [
                d.dependencies() for d in flatten_grouping(val)
            ]
            if not flat_dependencies or isinstance(flat_dependencies[0],
                                                   State_dash):
                grouping = val
            else:
                continue

        slc = slice(
            num_inputs + len(state_deps),
            num_inputs + len(state_deps) + len(flat_dependencies),
        )
        input_groupings[name] = (grouping, slc)
        state_deps.extend(flat_dependencies)

    return input_groupings, input_deps, state_deps
Exemplo n.º 3
0
def test_flatten_odd_value():
    # Anything other than tuple and dict should be treated as a
    # scalar and passed through
    expected = [0, sum, Input("foo", "bar")]
    vals_collection = (0, (sum, Input("foo", "bar")))
    result = flatten_grouping(vals_collection)
    assert expected == result
    assert len(result) == grouping_len(vals_collection)
Exemplo n.º 4
0
def test_map_grouping_mixed(mixed_grouping_size):
    grouping, size = mixed_grouping_size

    def fn(x):
        return x * 2 + 5

    result = map_grouping(fn, grouping)
    expected = make_grouping_by_index(
        grouping, list(map(fn, flatten_grouping(grouping))))
    assert expected == result
Exemplo n.º 5
0
 def args_components(self):
     """
     :return: list of the components corresponding to the plugin's args dependencies
     """
     return [
         self.template.build_argument_components(
             c.component_id, label=c.label,
             label_id=c.label_id).container_component
         for c in flatten_grouping(self.args) if c.has_component
     ]
Exemplo n.º 6
0
def extract_and_validate_output_values(res_grouping, dep_grouping):
    # Extracting property values from dependency components
    if isinstance(res_grouping, DashLabsDependency):
        res_grouping = res_grouping.property_value()

    # Check value against schema
    validate_grouping(res_grouping, dep_grouping)
    flat_results = flatten_grouping(res_grouping, dep_grouping)

    return flat_results
Exemplo n.º 7
0
def _add_arg_components_to_template(vals, template):
    for name, val in vals.items():
        deps = flatten_grouping(val)
        for dep in deps:
            if dep.has_component:
                opts = {}
                if isinstance(name, str):
                    opts["name"] = name

                template.add_component(
                    component=dep.component_id,
                    component_property=dep.component_property,
                    role=dep.role,
                    label=dep.label,
                    label_id=dep.label_id,
                    **opts,
                )
Exemplo n.º 8
0
def _normalize_output(output, template):
    # output_form stores whether wrapped function is expected to return values as
    # scalar, list, or dict.
    output_form = None
    if output is None or isinstance(output, list) and len(output) == 0:
        if template is None:
            raise ValueError(
                "No output dependency objects specified, and no template provided to\n"
                "construct a default output component.")
        else:
            output = template.default_output()

    if not isinstance(output, (list, dict)):
        output_form = "scalar"
        output = [output]

    if isinstance(output, list):
        # Convert output from list to
        output = {i: val for i, val in enumerate(output)}
        output_form = output_form or "list"
    else:
        output_form = output_form or "dict"

    all_output = OrderedDict()
    for name, pattern in output.items():
        if isinstance(pattern,
                      DashLabsDependency) and not pattern.has_component:
            pattern = pattern.dependencies(labs=True)

        flat_deps = flatten_grouping(pattern)
        for dep in flat_deps:
            if not isinstance(dep, DashLabsDependency):
                raise ValueError("Invalid dependency: {}".format(dep))

            if dep.has_component:
                # Check is arg is holding a pattern
                if dep.label is Component.UNDEFINED:
                    dep.label = None

                if dep.role is Component.UNDEFINED:
                    dep.role = "output"

        all_output[name] = pattern

    return all_output, output_form
Exemplo n.º 9
0
def _get_arg_output_dependencies(all_outputs):
    output_groupings = OrderedDict()
    output_deps = []

    # Collect input groupings
    for name, val in all_outputs.items():
        if isinstance(val, Output):
            grouping = val.dependencies()
            flat_dependencies = val.flat_dependencies()
        else:
            grouping = val
            flat_dependencies = [
                d.dependencies() for d in flatten_grouping(val)
            ]

        output_groupings[name] = grouping
        output_deps.extend(flat_dependencies)

    return output_groupings, output_deps
Exemplo n.º 10
0
def test_flatten_mixed(mixed_grouping_size):
    grouping, size = mixed_grouping_size
    expected = list(range(size))
    result = flatten_grouping(grouping)
    assert expected == result
    assert len(result) == grouping_len(grouping)
Exemplo n.º 11
0
def test_make_grouping_by_attr_scalar(scalar_grouping_size):
    int_grouping, size = scalar_grouping_size
    letter_grouping, source = make_grouping_attr_source(int_grouping)
    result = make_grouping_by_attr(letter_grouping, source)
    expected = getattr(source, flatten_grouping(letter_grouping)[0])
    assert expected == result
Exemplo n.º 12
0
def test_flatten_scalar(scalar_grouping_size):
    grouping, size = scalar_grouping_size
    expected = list(range(size))
    result = flatten_grouping(grouping)
    assert expected == result
    assert len(result) == grouping_len(grouping)
Exemplo n.º 13
0
def _validate_prop_grouping(component, props):
    for prop in flatten_grouping(props):
        _validate_prop_name(component, prop)
Exemplo n.º 14
0
 def flat_props(self):
     """
     :return: Flat list of properties in component_property grouping
     """
     return flatten_grouping(self.component_property)
Exemplo n.º 15
0
def _normalize_inputs(inputs, state):
    # Handle positional inputs/state as int dict
    if inputs == [] and isinstance(state, dict):
        inputs = {}

    if not isinstance(inputs, dict):
        input_form = "list"
        if state is not None and isinstance(state, dict):
            raise ValueError("inputs and state must both be lists or dicts")

        if isinstance(inputs, tuple):
            inputs = list(inputs)
        elif not isinstance(inputs, list):
            inputs = [inputs]

        if state:
            if isinstance(state, tuple):
                state = list(state)
            elif not isinstance(state, list):
                state = [state]

        # Create dict from positional argument indices to dependency objects
        # Note that state values always come after inputs in Dash 1
        inputs = {i: val for i, val in enumerate(inputs)}
        num_inputs = len(inputs)
        if state is not None:
            state = {i + num_inputs: val for i, val in enumerate(state)}
    else:  # isinstance(inputs, dict):
        input_form = "dict"

    if state is None:
        state = {}

    # Check for duplicate keys
    dups = [k for k in inputs if k in state]
    if dups:
        raise ValueError(
            "argument names must be unique across input and state\n"
            "    The following were found in both: {dups}".format(dups=dups))

    # Preprocess non-dependency inputs and state into arg instances
    all_inputs = OrderedDict()
    combined_inputs_state = inputs.copy()
    combined_inputs_state.update(state)
    for name, pattern in combined_inputs_state.items():
        if isinstance(pattern,
                      DashLabsDependency) and not pattern.has_component:
            pattern = pattern.dependencies(labs=True)

        flat_deps = flatten_grouping(pattern)
        for dep in flat_deps:
            if not isinstance(dep, DashLabsDependency):
                raise ValueError("Invalid dependency: {}".format(dep))

            if dep.has_component:
                # Apply default label if undefined
                # (if user explicitly set label to None, leave it alone)
                if dep.label is Component.UNDEFINED:
                    dep.label = name

                # Update default role if undefined
                if dep.role is Component.UNDEFINED:
                    dep.role = "input"

        all_inputs[name] = pattern

    return all_inputs, input_form