Exemplo n.º 1
0
def test_roll(chunks, shift, axis):
    x = np.random.randint(10, size=(4, 6))
    a = da.from_array(x, chunks=chunks)

    if _maybe_len(shift) != _maybe_len(axis):
        with pytest.raises(TypeError if axis is None else ValueError):
            da.roll(a, shift, axis)
    else:
        assert_eq(np.roll(x, shift, axis), da.roll(a, shift, axis))
Exemplo n.º 2
0
def test_roll(chunks, shift, axis):
    x = np.random.randint(10, size=(4, 6))
    a = da.from_array(x, chunks=chunks)

    if _maybe_len(shift) != _maybe_len(axis):
        with pytest.raises(TypeError if axis is None else ValueError):
            da.roll(a, shift, axis)
    else:
        assert_eq(np.roll(x, shift, axis), da.roll(a, shift, axis))
def test_roll(chunks, shift, axis):
    x = np.random.randint(10, size=(4, 6))
    a = da.from_array(x, chunks=chunks)

    if _maybe_len(shift) != _maybe_len(axis):
        with pytest.raises(TypeError if axis is None else ValueError):
            da.roll(a, shift, axis)
    else:
        if (_maybe_len(shift) > 1
                and LooseVersion(np.__version__) < LooseVersion("1.12.0")):
            pytest.skip("NumPy %s doesn't support multiple axes with `roll`."
                        " Need NumPy 1.12.0 or greater." % np.__version__)
        assert_eq(np.roll(x, shift, axis), da.roll(a, shift, axis))
Exemplo n.º 4
0
 def access_roll(x):
     #da.roll extracts an array where all values are shifted left, right, up or down
     l_roll = da.roll(x, 1, axis=0)
     r_roll = da.roll(x, -1, axis=0)
     return l_roll + r_roll + da.roll(x,1,axis=1) + da.roll(x,-1,axis=1) + \
         da.roll(l_roll, 1, axis=1) + da.roll(l_roll, -1, axis=1) + \
         da.roll(r_roll, 1, axis=1) + da.roll(r_roll, -1, axis=1)
Exemplo n.º 5
0
def _remove_bad_pixels(dask_array, bad_pixel_array):
    """Replace values in bad pixels with mean of neighbors.

    Parameters
    ----------
    dask_array : Dask array
        Must be at least two dimensions
    bad_pixel_array : array-like
        Must either have the same shape as dask_array,
        or the same shape as the two last dimensions of dask_array.

    Returns
    -------
    data_output : Dask array

    Examples
    --------
    >>> import pyxem.utils.dask_tools as dt
    >>> s = pxm.dummy_data.dummy_data.get_dead_pixel_signal(lazy=True)
    >>> dead_pixels = dt._find_dead_pixels(s.data)
    >>> data_output = dt._remove_bad_pixels(s.data, dead_pixels)

    """
    if len(dask_array.shape) < 2:
        raise ValueError("dask_array {0} must be at least 2 dimensions".format(
            dask_array.shape))
    if bad_pixel_array.shape == dask_array.shape:
        pass
    elif bad_pixel_array.shape == dask_array.shape[-2:]:
        temp_array = da.zeros_like(dask_array)
        bad_pixel_array = da.add(temp_array, bad_pixel_array)
    else:
        raise ValueError(
            "bad_pixel_array {0} must either 2-D and have the same shape "
            "as the two last dimensions in dask_array {1}. Or be "
            "the same shape as dask_array {2}".format(bad_pixel_array.shape,
                                                      dask_array.shape[-2:],
                                                      dask_array.shape))
    dif0 = da.roll(dask_array, shift=1, axis=-2)
    dif1 = da.roll(dask_array, shift=-1, axis=-2)
    dif2 = da.roll(dask_array, shift=1, axis=-1)
    dif3 = da.roll(dask_array, shift=-1, axis=-1)

    dif = (dif0 + dif1 + dif2 + dif3) / 4
    dif = dif * bad_pixel_array

    data_output = da.multiply(dask_array, da.logical_not(bad_pixel_array))
    data_output = data_output + dif

    return data_output
Exemplo n.º 6
0
def test_roll(chunks, shift, axis):
    x = np.random.randint(10, size=(4, 6))
    a = da.from_array(x, chunks=chunks)

    if _maybe_len(shift) != _maybe_len(axis):
        with pytest.raises(TypeError if axis is None else ValueError):
            da.roll(a, shift, axis)
    else:
        if (_maybe_len(shift) > 1 and
                LooseVersion(np.__version__) < LooseVersion("1.12.0")):
            pytest.skip(
                "NumPy %s doesn't support multiple axes with `roll`."
                " Need NumPy 1.12.0 or greater." % np.__version__
            )
        assert_eq(np.roll(x, shift, axis), da.roll(a, shift, axis))
Exemplo n.º 7
0
def _find_hot_pixels(dask_array, threshold_multiplier=500, mask_array=None):
    """Find single pixels which have much larger values compared to neighbors.

    Finds pixel which has very large value difference compared to its
    neighbors. The functions looks at both at the direct neighbors
    (x-1, y), and also the diagonal neighbors (x-1, y-1).

    Experimental function, so use with care.

    Parameters
    ----------
    dask_array : Dask array
        Must be have 4 dimensions.
    threshold_multiplier : scaler
        Used to threshold the dif.
    mask_array : NumPy array, optional
        Array with bool values. The True values will be masked
        (i.e. ignored). Must have the same shape as the two
        last dimensions in dask_array.

    """
    if len(dask_array.shape) < 2:
        raise ValueError("dask_array must have at least 2 dimensions")

    dask_array = dask_array.astype("float64")
    dif0 = da.roll(dask_array, shift=1, axis=-2)
    dif1 = da.roll(dask_array, shift=-1, axis=-2)
    dif2 = da.roll(dask_array, shift=1, axis=-1)
    dif3 = da.roll(dask_array, shift=-1, axis=-1)

    dif4 = da.roll(dask_array, shift=(1, 1), axis=(-2, -1))
    dif5 = da.roll(dask_array, shift=(-1, 1), axis=(-2, -1))
    dif6 = da.roll(dask_array, shift=(1, -1), axis=(-2, -1))
    dif7 = da.roll(dask_array, shift=(-1, -1), axis=(-2, -1))

    dif = dif0 + dif1 + dif2 + dif3 + dif4 + dif5 + dif6 + dif7
    dif = dif - (dask_array * 8)

    if mask_array is not None:
        data = _mask_array(dask_array, mask_array=mask_array)
    else:
        data = dask_array
    data_mean = data.mean() * threshold_multiplier
    data_threshold = dif < -data_mean
    if mask_array is not None:
        mask_array = np.invert(mask_array).astype(np.float64)
        data_threshold = data_threshold * mask_array
    return data_threshold
Exemplo n.º 8
0
    def vertical_integration(var_x, var_y):
        """
        Vertical integration.

        Perform a non-cyclic centered finite-difference to integrate
        variable x with respect to variable y along pressure levels.

        Parameters
        ----------
        x: iris.cube.Cube
            Cube of variable x.
        y: iris.cube.Cube
            Cube of variable y.

        Returns
        -------
        dxdy: iris.cube.Cube
            Cube of variable integrated along pressure levels.
        """
        plevs = var_x.shape[1]

        dxdy_0 = (
            (var_x[:, 1, :, :].lazy_data() - var_x[:, 0, :, :].lazy_data()) /
            (var_y[:, 1, :, :].lazy_data() - var_y[:, 0, :, :].lazy_data()))

        dxdy_centre = ((var_x[:, 2:plevs, :, :].lazy_data() -
                        var_x[:, 0:plevs - 2, :, :].lazy_data()) /
                       (var_y[:, 2:plevs, :, :].lazy_data() -
                        var_y[:, 0:plevs - 2, :, :].lazy_data()))

        dxdy_end = ((var_x[:, plevs - 1, :, :].lazy_data() -
                     var_x[:, plevs - 2, :, :].lazy_data()) /
                    (var_y[:, plevs - 1, :, :].lazy_data() -
                     var_y[:, plevs - 2, :, :].lazy_data()))

        bounds = [dxdy_end, dxdy_0]
        stacked_bounds = da.stack(bounds, axis=1)
        total = [dxdy_centre, stacked_bounds]

        # Concatenate arrays where the last slice is dxdy_0
        dxdy = da.concatenate(total, axis=1)

        # Move dxdy_0 to the beggining of the array
        dxdy = da.roll(dxdy, 1, axis=1)

        return dxdy
Exemplo n.º 9
0
def fix_pattern_order(data, shift=-1, overwrite=False, corrupt_idx=(0, 0),
                      overwrite_idx=(-1, -1)):
    """Shift the patterns a number of steps equal to `shift` using
    `numpy.roll` or the dask equivalent. If a pattern specified by
    `corrupt_idx` is corrupted this pattern can be overwritten by
    another pattern specified by `overwrite_idx` before shifting, if
    the data is not lazy.

    Parameters
    ----------
    data : array_like
        Two-dimensional array containing signal data.
    shift : int, optional
        Number of steps to shift patterns.
    overwrite : bool, optional
        Whether to overwrite a pattern or not.
    corrupt_idx : tuple, optional
        Index of corrupted pattern.
    overwrite_idx : tuple, optional
        Index of pattern to overwrite corrupted pattern with.

    Returns
    -------
    data : array_like
        Two-dimensional array containing shifted data.
    """
    # Overwrite patterns before shifting
    if overwrite:
        # Check if lazy
        if isinstance(data, da.Array):
            raise ValueError("Cannot overwrite data in dask array.")
        data[corrupt_idx] = data[overwrite_idx]

    # Shift patterns
    sx, sy = data.shape[2:]
    shift_by = shift * sx * sy
    if isinstance(data, da.Array):
        data = da.roll(data, shift=shift_by)
    else:
        data = np.roll(data, shift=shift_by)

    return data
Exemplo n.º 10
0
def roll(field, to_roll, axes_order, **kwargs):
    from dask.array import roll
    indeces = []
    shifts = []
    for axis, shift in to_roll.items():
        axis_indeces = []
        last_index = -1
        count = axes_order.count(axis)
        for i in range(count):
            axis_indeces.append(axes_order.index(axis, last_index + 1))
            last_index = axis_indeces[-1]
        if count > 1:
            axis_order = kwargs[key + "_order"]
        else:
            axis_order = [0]
        for idx, pos in zip(axis_indeces, axis_order):
            indeces.append(idx)
            shifts.append(shift[pos])

    return roll(field, tuple(shifts), axis=tuple(indeces))
Exemplo n.º 11
0
def _extract_variable(in_files, var, cfg, out_dir):
    logger.info("CMORizing variable '%s' from input files '%s'",
                var['short_name'], ', '.join(in_files))
    attributes = deepcopy(cfg['attributes'])
    attributes['mip'] = var['mip']
    cmor_table = CMOR_TABLES[attributes['project_id']]
    definition = cmor_table.get_variable(var['mip'], var['short_name'])

    cube = _load_cube(in_files, var)

    utils.set_global_atts(cube, attributes)

    # Set correct names
    cube.var_name = definition.short_name
    # cube.standard_name = definition.standard_name
    cube.long_name = definition.long_name

    # Fix units
    cube.units = definition.units

    # Fix data type
    cube.data = cube.core_data().astype('float32')

    # Roll longitude
    cube.coord('longitude').points = cube.coord('longitude').points + 180.
    nlon = len(cube.coord('longitude').points)
    cube.data = da.roll(cube.core_data(), int(nlon / 2), axis=-1)

    # Fix coordinates
    cube = _fix_coordinates(cube, definition)

    cube.coord('latitude').attributes = None
    cube.coord('longitude').attributes = None

    cube = _fix_time_monthly(cube)

    logger.debug("Saving cube\n%s", cube)
    utils.save_variable(cube, cube.var_name, out_dir, attributes)
    logger.info("Finished CMORizing %s", ', '.join(in_files))
Exemplo n.º 12
0
def _roll_cube_data(cube, shift, axis):
    """Roll a cube data on specified axis."""
    cube.data = da.roll(cube.core_data(), shift, axis=axis)
    return cube
Exemplo n.º 13
0
    def fix_metadata(self, cubes):
        """Fix metadata.

        Remove unnecessary spaces in metadat and rename ``var_name`` of
        latitude and longitude and fix longitude boundary description may be
        wrong (lons=[0, ..., 356.25]; on_bnds=[[-1.875, 1.875], ..., [354.375,
        360]]).

        Parameters
        ----------
        cubes : iris.cube.CubeList
            Cubes to fix.

        Returns
        -------
        iris.cube.Cube

        """
        coords_to_change = {
            'latitude': 'lat',
            'longitude': 'lon',
        }
        for cube in cubes:
            strip_cube_metadata(cube)
            for (std_name, var_name) in coords_to_change.items():
                try:
                    coord = cube.coord(std_name)
                except iris.exceptions.CoordinateNotFoundError:
                    pass
                else:
                    coord.var_name = var_name
            time_units = cube.attributes.get('parent_time_units')
            if time_units is not None:
                cube.attributes['parent_time_units'] = time_units.replace(
                    ' (noleap)', '')

        for cube in cubes:
            coord_names = [cor.standard_name for cor in cube.coords()]
            if 'longitude' in coord_names:
                lon_coord = cube.coord('longitude')
                if lon_coord.ndim == 1 and lon_coord.has_bounds():
                    lon_bnds = lon_coord.bounds.copy()
                    # atmos & land
                    if lon_coord.points[0] == 0. and \
                            lon_coord.points[-1] == 356.25 and \
                            lon_bnds[-1][-1] == 360.:
                        lon_bnds[-1][-1] = 358.125
                        lon_coord.bounds = lon_bnds
                    # ocean & seaice
                    if lon_coord.points[0] == -0.9375:
                        lon_dim = cube.coord_dims('longitude')[0]
                        cube.data = da.roll(cube.core_data(), -1, axis=lon_dim)
                        lon_points = np.roll(lon_coord.core_points(), -1)
                        lon_bounds = np.roll(lon_coord.core_bounds(), -1,
                                             axis=0)
                        lon_points[-1] += 360.0
                        lon_bounds[-1] += 360.0
                        lon_coord.points = lon_points
                        lon_coord.bounds = lon_bounds

        return cubes
Exemplo n.º 14
0
 def _rmatvec(self, x):
     if self.reshape:
         x = da.reshape(x, self.dims)
     y = da.roll(x, shift=-self.shift, axis=self.dir)
     y = y.rechunk(x.chunks)
     return y.ravel()