Exemplo n.º 1
0
 def test_get_footprint(self):
     output = utils.get_footprint(size=5)
     reference = np.array(
         [
             [0, 1, 1, 1, 0],
             [1, 1, 1, 1, 1],
             [1, 1, 1, 1, 1],
             [1, 1, 1, 1, 1],
             [0, 1, 1, 1, 0],
         ],
         dtype="b1",
     )
     self.assertTrue(np.equal(output, reference).all())
Exemplo n.º 2
0
    def process(data, size=None):
        if data is None or size is None or "values" not in data:
            return data
        radius = int(size // 2)
        footprint = get_footprint(size)[np.newaxis]

        # put absolute minimum on no data pixels
        array = data["values"].copy()
        minimum = get_dtype_min(array.dtype)
        no_data_mask = array == data["no_data_value"]
        array[no_data_mask] = minimum

        # apply maximum filter
        filtered = ndimage.maximum_filter(array, footprint=footprint)

        # replace absolute minimum with original fillvalue
        filtered[(filtered == minimum) & no_data_mask] = data["no_data_value"]

        # cut out the result
        filtered = filtered[:, radius:-radius, radius:-radius]
        return {"values": filtered, "no_data_value": data["no_data_value"]}