Exemplo n.º 1
0
    def loglikelihood(self, Xbeta, y):
        """
        Evaluate the logistic loglikelihood

        Parameters
        ----------
        Xbeta : array, shape (n_samples, n_features)
        y : array, shape (n_samples)
        """
        enXbeta = exp(-Xbeta)
        return (Xbeta + log1p(enXbeta)).sum() - dot(y, Xbeta)
Exemplo n.º 2
0
def bfgs(X, y, max_iter=500, tol=1e-14, family=Logistic):
    '''Simple implementation of BFGS.'''

    n, p = X.shape
    y = y.squeeze()

    recalcRate = 10
    stepSize = 1.0
    armijoMult = 1e-4
    backtrackMult = 0.5
    stepGrowth = 1.25

    beta = np.zeros(p)
    Hk = np.eye(p)
    for k in range(max_iter):

        if k % recalcRate == 0:
            Xbeta = X.dot(beta)
            eXbeta = exp(Xbeta)
            func = log1p(eXbeta).sum() - dot(y, Xbeta)

        e1 = eXbeta + 1.0
        gradient = dot(X.T,
                       eXbeta / e1 - y)  # implicit numpy -> dask conversion

        if k:
            yk = yk + gradient  # TODO: gradient is dasky and yk is numpy-y
            rhok = 1 / yk.dot(sk)
            adj = np.eye(p) - rhok * dot(sk, yk.T)
            Hk = dot(adj, dot(Hk, adj.T)) + rhok * dot(sk, sk.T)

        step = dot(Hk, gradient)
        steplen = dot(step, gradient)
        Xstep = dot(X, step)

        # backtracking line search
        lf = func
        old_Xbeta = Xbeta
        stepSize, _, _, func = compute_stepsize_dask(
            beta,
            step,
            Xbeta,
            Xstep,
            y,
            func,
            family=family,
            backtrackMult=backtrackMult,
            armijoMult=armijoMult,
            stepSize=stepSize)

        beta, stepSize, Xbeta, gradient, lf, func, step, Xstep = persist(
            beta, stepSize, Xbeta, gradient, lf, func, step, Xstep)

        stepSize, lf, func, step = compute(stepSize, lf, func, step)

        beta = beta - stepSize * step  # tiny bit of repeat work here to avoid communication
        Xbeta = Xbeta - stepSize * Xstep

        if stepSize == 0:
            print('No more progress')
            break

        # necessary for gradient computation
        eXbeta = exp(Xbeta)

        yk = -gradient
        sk = -stepSize * step
        stepSize *= stepGrowth

        if stepSize == 0:
            print('No more progress')
            break

        df = lf - func
        df /= max(func, lf)
        if df < tol:
            print('Converged')
            break

    return beta
Exemplo n.º 3
0
 def loglike(Xbeta, y):
     eXbeta = exp(Xbeta)
     return (log1p(eXbeta)).sum() - dot(y, Xbeta)