def create_dataset(dataset_opt): '''create dataset''' mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHROTF': from data.LRHROTF_dataset import LRHRDataset as D elif mode == 'LRHRC': from data.LRHRC_dataset import LRHRDataset as D elif mode == 'LRHRseg_bg': from data.LRHR_seg_bg_dataset import LRHRSeg_BG_Dataset as D elif mode == 'VLRHR': from data.Vid_dataset import VidTrainsetLoader as D elif mode == 'VLR': from data.Vid_dataset import VidTestsetLoader as D elif mode == 'LRHRPBR': from data.LRHRPBR_dataset import LRHRDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D dataset = D(dataset_opt) elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D dataset = D(dataset_opt) # elif mode == 'LQGTseg_bg': # from data.LQGT_seg_bg_dataset import LQGTSeg_BG_Dataset as D elif mode == 'yoon': if dataset_opt["phase"] == "train": from degradation_pair_data import DegradationParing as D hr_folder = dataset_opt["dataroot_GT"] kern_folder = dataset_opt["kernel_folder"] noise_folder = dataset_opt["noise_folder"] gt_patch_size = dataset_opt["GT_size"] scale_factor = 1 / dataset_opt["scale"] use_shuffle = dataset_opt["use_shuffle"] rgb = dataset_opt["color"] == "RGB" dataset = D(hr_folder, kern_folder, noise_folder, scale_factor, gt_patch_size, permute=use_shuffle, bgr2rgb=rgb) else: from degradation_pair_data import TestDataSR as D lr_folder = dataset_opt["dataroot_LQ"] gt_folder = dataset_opt["dataroot_GT"] use_shuffle = dataset_opt["use_shuffle"] rgb = dataset_opt["color"] == "RGB" dataset = D(lr_folder, gt_folder, "/mnt/data/NTIRE2020/realSR/track1/Corrupted-te-x", permute=use_shuffle, bgr2rgb=rgb) else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt, is_train=True): '''create dataset''' mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'RANK_IMIM_Pair': from data.Rank_IMIM_Pair_dataset import RANK_IMIM_Pair_Dataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) if 'RANK_IMIM_Pair' in mode: dataset = D(dataset_opt, is_train=is_train) else: dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'].upper() if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D else: raise NotImplementedError("Dataset [%s] is not recognized." % mode) dataset = D(dataset_opt) print('===> [%s] Dataset is created.' % (mode)) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D else: raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHRseg_bg': from data.LRHR_seg_bg_dataset import LRHRSeg_BG_Dataset as D else: raise NotImplementedError("Dataset [%s] is not recognized." % mode) dataset = D(dataset_opt) print('Dataset [%s - %s] is created.' % (dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LR': # Only LR images are provided from data.LR_dataset import LRDataset as D elif mode == 'LRHR': # LR and target images are provided from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHR_four_levels': # LR, target with intermediate resolution images are provided from data.LRHR_four_levels_dataset import LRHRFourLevelsDataset as D else: raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) print('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHR_mid': from data.LRHR_mid_dataset import LRHRMidDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) print('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt, **kwargs): mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHRseg_bg': from data.LRHR_seg_bg_dataset import LRHRSeg_BG_Dataset as D elif 'JPEG' in mode: from data.JPEG_dataset import JpegDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt, **kwargs) print('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def _create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'AB': from data.AB_dataset import ABDataset as D elif mode == 'ImgSyn_five_levels': from data.ImgSyn_five_levels_dataset import ImageLabelDatasetFiveLevels as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) print('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): '''create dataset''' mode = dataset_opt['mode'] if mode == 'LR': # for testing from data.LR_dataset import LRDataset as D elif mode == 'LRHR': # for training or validation from data.LRHR_dataset import LRHRDataset as D elif mode == 'MLRHR': # for training or validation from data.MLRHR_dataset import MLRHRDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): '''create dataset''' mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHRseg_bg': from data.LRHR_seg_bg_dataset import LRHRSeg_BG_Dataset as D elif mode == 'dstl': from data.dstl_dataset.dataset_png import DstlDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'].upper() if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHR_LMDB': from data.LRHR_dataset import LRHRlmdbDatasetwithcoeff as D elif mode == 'LRHRSEG': from data.LRHR_seg_dataset import LRHRSegDataset as D elif mode == 'LRHR_H5': from data.LRHR_H5dataset import LRHRH5Dataset as D elif mode == 'LRHR_H5_M': from data.LRHR_H5dataset4memory import LRHRH5Dataset as D else: raise NotImplementedError("Dataset [%s] is not recognized." % mode) dataset = D(dataset_opt) print('Dataset [%s - %s] is created.' % (dataset.name(), dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): '''create dataset''' mode = dataset_opt['mode'] if mode == 'LR': from data.LR_dataset import LRDataset as D elif mode == 'LRHR': from data.LRHR_dataset import LRHRDataset as D elif mode == 'LRHR_Trans_Wavelet_GAN': from data.LRHR_Trans_Wavelet_GAN import LRHRTransWaveletGAN as D elif mode == 'LRHR_wavelet_unpair': from data.LRHR_wavelet_unpairMix_dataset import LRHR_wavelet_Mixunpair_Dataset as D elif mode == 'LRHR_wavelet_unpair_fake_real_w_EQ': from data.LRHR_wavelet_unpairEq_dataset import LRHR_wavelet_Equnpair_Dataset as D elif mode == 'LRHR_wavelet_unpair_fake_weights_EQ': from data.LRHR_wavelet_unpairEq_fake_w_dataset import LRHR_wavelet_Equnpair_Dataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): return D(dataset_opt)
def create_dataset(dataset_opt): '''create dataset''' dataset = D(dataset_opt) return dataset