Exemplo n.º 1
0
def prepare_dataloader(tfrecord_dir, batch_size, subset="train"):

    anchorobj = anchor.Anchor(img_size=550,
                              feature_map_size=[69, 35, 18, 9, 5],
                              aspect_ratio=[1, 0.5, 2],
                              scale=[24, 48, 96, 192, 384])

    parser = yolact_parser.Parser(output_size=550,
                                  anchor_instance=anchorobj,
                                  match_threshold=0.5,
                                  unmatched_threshold=0.5,
                                  mode=subset)
    files = tf.io.matching_files(os.path.join(tfrecord_dir, "coco_%s.*" % subset))
    num_shards = tf.cast(tf.shape(files)[0], tf.int64)
    shards = tf.data.Dataset.from_tensor_slices(files)
    shards = shards.shuffle(num_shards)
    shards = shards.repeat()
    dataset = shards.interleave(tf.data.TFRecordDataset,
                                cycle_length=num_shards,
                                num_parallel_calls=tf.data.experimental.AUTOTUNE)

    dataset = dataset.shuffle(buffer_size=2048)
    dataset = dataset.map(map_func=parser, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    dataset = dataset.batch(batch_size)
    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

    return dataset
Exemplo n.º 2
0
def prepare_dataloader(img_h, img_w, feature_map_size, protonet_out_size, aspect_ratio, scale, tfrecord_dir, batch_size, subset="train"):

    anchorobj = anchor.Anchor(img_size_h=img_h,img_size_w=img_w,
                              feature_map_size=feature_map_size,
                              aspect_ratio=aspect_ratio,
                              scale=scale)

    parser = yolact_parser.Parser(output_size=[img_h, img_w], # (h,w)
                                  anchor_instance=anchorobj,
                                  match_threshold=0.5,
                                  unmatched_threshold=0.5,
                                  mode=subset,
                                  proto_output_size=[int(protonet_out_size[0]), int(protonet_out_size[1])])
    files = tf.io.matching_files(os.path.join(tfrecord_dir, "%s.*" % subset))
    num_shards = tf.cast(tf.shape(files)[0], tf.int64)
    shards = tf.data.Dataset.from_tensor_slices(files)
    shards = shards.shuffle(num_shards)
    shards = shards.repeat()
    dataset = shards.interleave(tf.data.TFRecordDataset,
                                cycle_length=num_shards,
                                num_parallel_calls=tf.data.experimental.AUTOTUNE)

    dataset = dataset.shuffle(buffer_size=2048)
    dataset = dataset.map(map_func=parser, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    dataset = dataset.batch(batch_size)
    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

    return dataset
Exemplo n.º 3
0
    def __init__(self, img_h, img_w, fpn_channels, num_class, num_mask, aspect_ratio, scales):
        super(Yolact, self).__init__()
        out = ['conv3_block4_out', 'conv4_block6_out', 'conv5_block3_out']
        # use pre-trained ResNet50
        # Keras BatchNormalization problem 
        # https://github.com/keras-team/keras/pull/9965#issuecomment-501933060
        tf.keras.layers.BatchNormalization = FrozenBatchNormalization
        base_model = tf.keras.applications.ResNet50(input_shape=(img_h, img_w, 3),
                                                    include_top=False,
                                                    layers=tf.keras.layers,
                                                    weights='imagenet')
        # extract certain feature maps for FPN
        self.backbone_resnet = tf.keras.Model(inputs=base_model.input,
                                              outputs=[base_model.get_layer(x).output for x in out])
        
        # Calculating feature map size
        # https://stackoverflow.com/a/44242277/4582711
        # https://github.com/tensorflow/tensorflow/issues/4297#issuecomment-246080982
        self.feature_map_size = np.array([list(base_model.get_layer(x).output.shape[1:3]) for x in out])
        out_height_p6 = np.ceil((self.feature_map_size[-1, 0]).astype(np.float32) / float(2))
        out_width_p6  = np.ceil((self.feature_map_size[-1, 1]).astype(np.float32) / float(2))
        out_height_p7 = np.ceil(out_height_p6 / float(2))
        out_width_p7  = np.ceil(out_width_p6/ float(2))
        self.feature_map_size = np.concatenate((self.feature_map_size, [[out_height_p6, out_width_p6], [out_height_p7, out_width_p7]]), axis=0)
        self.protonet_out_size = self.feature_map_size[0]*2 # Only one upsampling on p3 

        self.backbone_fpn = FeaturePyramidNeck(fpn_channels)
        self.protonet = ProtoNet(num_mask)

        # semantic segmentation branch to boost feature richness
        self.semantic_segmentation = tf.keras.layers.Conv2D(num_class-1, (1, 1), 1, padding="same",
                                                            kernel_initializer=tf.keras.initializers.glorot_uniform())

        anchorobj = anchor.Anchor(img_size_h=img_h,img_size_w=img_w,
                              feature_map_size=self.feature_map_size,
                              aspect_ratio=aspect_ratio,
                              scale=scales)

        self.num_anchors = anchorobj.num_anchors
        self.priors = anchorobj.anchors
        # print("prior shape:", self.priors.shape)
        # print("num anchor per feature map: ", self.num_anchor)

        # shared prediction head
        # Here, len(aspect_ratio) is passed as during prior calculations, individula scale is selected for each layer.
        # So, when scale are [24, 48, 96, 130, 192] that means 24 is for p3; 48 is for p4 and so on.
        # So, number of priors for that layer will be HxWxlen(aspect_ratio)
        # Hence, passing len(aspect_ratio)
        # This implementation differs from the original used in yolact
        self.predictionHead = PredictionModule(256, len(aspect_ratio), num_class, num_mask)

        # post-processing for evaluation
        self.detect = Detect(num_class, bkg_label=0, top_k=200,
                conf_thresh=0.05, nms_thresh=0.5)
        self.max_output_size = 300
Exemplo n.º 4
0
import numpy as np
import tensorflow as tf

from data import anchor

test_bbox = tf.convert_to_tensor(
    (np.array([[204.044, 253.8351, 487.8226, 427.06363],
               [0, 140.01741, 550, 290.21936],
               [40.005028, 117.37102, 255.7913, 205.13097],
               [263.31314, 67.0434, 514.04736, 124.48139],
               [0, 503.79834, 487.0279, 550]])),
    dtype=tf.float32)

test_labels = tf.convert_to_tensor((np.array([[1], [2], [3], [4], [5]])),
                                   dtype=tf.float32)

anchorobj = anchor.Anchor(img_size=550,
                          feature_map_size=[69, 35, 18, 9, 5],
                          aspect_ratio=[1, 0.5, 2],
                          scale=[24, 48, 96, 192, 384])
print(anchorobj.get_anchors())

target_cls, target_loc, max_id_for_anchors, match_positiveness = anchorobj.matching(
    threshold_pos=0.5,
    threshold_neg=0.4,
    gt_bbox=test_bbox,
    gt_labels=test_labels)

print(target_loc)
Exemplo n.º 5
0
               aspect_ratio=[1, 0.5, 2],
               scales=[24, 48, 96, 192, 384])

model = YOLACT.gen()

ckpt_dir = "checkpoints-SGD"
latest = tf.train.latest_checkpoint(ckpt_dir)

checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir))
print("Restore Ckpt Sucessfully!!")

# Load Validation Images and do Detection
# -----------------------------------------------------------------------------------------------
# Need default anchor
anchorobj = anchor.Anchor(img_size=256, feature_map_size=[32, 16, 8, 4, 2], aspect_ratio=[1, 0.5, 2], scale=[24, 48, 96, 192, 384])
valid_dataset = dataset_coco.prepare_evalloader(img_size=256,
                                                tfrecord_dir='data/obj_tfrecord_256x256_20200921',
                                                subset='val')
anchors = anchorobj.get_anchors()
detect_layer = Detect(num_cls=13, label_background=0, top_k=200, conf_threshold=0.3, nms_threshold=0.5, anchors=anchors)

remapping = [
    'Background',
    'Face',
    'Body',
    'Bicycle',
    'Car',
    'Motorbike',
    'Airplane',
    'Ship',