Exemplo n.º 1
0
 def reset(self, i):
     self.seed = self.range_start + i % (self.range_end - self.range_start)
     self.count = (self.count + 1) % (self.range_end - self.range_start)
     self.packages, self.resources = gen_data.wrapper(self.seed)
     self.mask = torch.zeros(1, define.get_value('package_num') + 1)
     self.mask[0, -1] =1
     self.path = path_obj.Path(self.resources[0], self.packages, None, False, self.device)
     self.reward = 0
     self.times = 0
Exemplo n.º 2
0
def evaluate(model, seed):
    returns = 0
    packages, resources = gen_data.wrapper(seed)
    path = path_obj.Path(resources[0], packages, lambda x:0, True, device)
    while True:
        state = path.to_state()
        prob, value = model(*state)
        action = torch.argmax(prob, dim=1)
        action = action.cpu().numpy()[0]
        package = packages[action]
        times = path.getResourceNeedTime(package) + path.getResourceWorkingTime()

        if times + path.getReturnTime(package) > define.get_value('time_limit'):
            return returns
        reward = package.getUrgency()
        path.addWorkPackage(package)
        path.setResourceWorkingTime(times)
        path.setResourcePosition(package.getX(), package.getY(), package.getId())
        returns += reward

    return returns
Exemplo n.º 3
0
 def reset(self):
     self.packages, self.resources = gen_data.wrapper(self.range_start + self.count)
     self.count = (self.count + 1) % (self.range_end - self.range_start)
     self.path = path_obj.Path(self.resources[0], self.packages, lambda x:0, True, self.device)
     self.done = 0
     return self.path.to_state()
Exemplo n.º 4
0
    # model.load_state_dict()
    # model = model.to(device)
    # model.eval()
    # torch.no_grad()

    define.init()
    define.set_value('package_num', args.package_num)
    define.set_value('time_limit', args.time_limit)
    define.set_value('time_interval', args.time_interval)
    define.set_value('func_type', args.func_type)
    gen_data.generate_data(10000, args.package_num, args.func_type)

    if args.mode == 'no':
        pool = Pool(args.pool_num)
        result = pool.map(f,
                          [gen_data.wrapper(i) for i in range(0, args.span)])
        print(result)
        p = [r[0][0] for r in result]
        s = [r[0][1] for r in result]
        print(np.mean(p, axis=0))
        np.save('output/output_uniform_{}_{}'.format(args.seed, args.span), p)
        pickle.dump([r[0] for r in result], open('solution/no_dqn.pkl', 'wb'))
    elif args.mode == 'dqn':
        state_dict = torch.load('model/model_{}.ckpt'.format(args.model),
                                map_location=torch.device('cpu'))
        datas = [gen_data.wrapper(i) for i in range(0, args.span)]
        data2s = [gen_data.get_data(i) for i in range(0, args.span)]
        print(len(datas), args.span)
        if args.debug:
            result = []
            for line in [[