def train_and_test(nb_epochs, weight, method, degree, random_seed, nc): """ Runs the Bigan on the KDD dataset Note: Saves summaries on tensorboard. To display them, please use cmd line tensorboard --logdir=model.training_logdir() --port=number Args: nb_epochs (int): number of epochs weight (float, optional): weight for the anomaly score composition method (str, optional): 'fm' for ``Feature Matching`` or "cross-e" for ``cross entropy``, "efm" etc. anomalous_label (int): int in range 0 to 10, is the class/digit which is considered outlier """ logger = logging.getLogger("BiGAN.train.kdd.{}".format(method)) data.set_nc(nc) print("get_shape", data.get_shape_input()[1]) # Placeholders input_pl = tf.placeholder(tf.float32, shape=data.get_shape_input(), name="input") is_training_pl = tf.placeholder(tf.bool, [], name='is_training_pl') learning_rate = tf.placeholder(tf.float32, shape=(), name="lr_pl") # Data trainx, trainy = data.get_train() trainx_copy = trainx.copy() testx, testy = data.get_test() # Parameters starting_lr = network.learning_rate batch_size = network.batch_size latent_dim = network.latent_dim ema_decay = 0.9999 rng = np.random.RandomState(RANDOM_SEED) nr_batches_train = int(trainx.shape[0] / batch_size) nr_batches_test = int(testx.shape[0] / batch_size) logger.info('Building training graph...') logger.warn("The BiGAN is training with the following parameters:") display_parameters(batch_size, starting_lr, ema_decay, weight, method, degree) gen = network.decoder enc = network.encoder dis = network.discriminator with tf.variable_scope('encoder_model'): z_gen = enc(input_pl, is_training=is_training_pl) with tf.variable_scope('generator_model'): z = tf.random_normal([batch_size, latent_dim]) x_gen = gen(z, is_training=is_training_pl) with tf.variable_scope('discriminator_model'): l_encoder, inter_layer_inp = dis(z_gen, input_pl, is_training=is_training_pl) l_generator, inter_layer_rct = dis(z, x_gen, is_training=is_training_pl, reuse=True) with tf.name_scope('loss_functions'): # discriminator loss_dis_enc = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(l_encoder), logits=l_encoder)) loss_dis_gen = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(l_generator), logits=l_generator)) loss_discriminator = loss_dis_gen + loss_dis_enc # generator loss_generator = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(l_generator), logits=l_generator)) # encoder loss_encoder = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(l_encoder), logits=l_encoder)) with tf.name_scope('optimizers'): # control op dependencies for batch norm and trainable variables tvars = tf.trainable_variables() dvars = [var for var in tvars if 'discriminator_model' in var.name] gvars = [var for var in tvars if 'generator_model' in var.name] evars = [var for var in tvars if 'encoder_model' in var.name] update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) update_ops_gen = [ x for x in update_ops if ('generator_model' in x.name) ] update_ops_enc = [x for x in update_ops if ('encoder_model' in x.name)] update_ops_dis = [ x for x in update_ops if ('discriminator_model' in x.name) ] optimizer_dis = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='dis_optimizer') optimizer_gen = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='gen_optimizer') optimizer_enc = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='enc_optimizer') with tf.control_dependencies(update_ops_gen): gen_op = optimizer_gen.minimize(loss_generator, var_list=gvars) with tf.control_dependencies(update_ops_enc): enc_op = optimizer_enc.minimize(loss_encoder, var_list=evars) with tf.control_dependencies(update_ops_dis): dis_op = optimizer_dis.minimize(loss_discriminator, var_list=dvars) # Exponential Moving Average for estimation dis_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_dis = dis_ema.apply(dvars) with tf.control_dependencies([dis_op]): train_dis_op = tf.group(maintain_averages_op_dis) gen_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_gen = gen_ema.apply(gvars) with tf.control_dependencies([gen_op]): train_gen_op = tf.group(maintain_averages_op_gen) enc_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_enc = enc_ema.apply(evars) with tf.control_dependencies([enc_op]): train_enc_op = tf.group(maintain_averages_op_enc) with tf.name_scope('summary'): with tf.name_scope('dis_summary'): tf.summary.scalar('loss_discriminator', loss_discriminator, ['dis']) tf.summary.scalar('loss_dis_encoder', loss_dis_enc, ['dis']) tf.summary.scalar('loss_dis_gen', loss_dis_gen, ['dis']) with tf.name_scope('gen_summary'): tf.summary.scalar('loss_generator', loss_generator, ['gen']) tf.summary.scalar('loss_encoder', loss_encoder, ['gen']) sum_op_dis = tf.summary.merge_all('dis') sum_op_gen = tf.summary.merge_all('gen') logger.info('Building testing graph...') with tf.variable_scope('encoder_model'): z_gen_ema = enc(input_pl, is_training=is_training_pl, getter=get_getter(enc_ema), reuse=True) with tf.variable_scope('generator_model'): reconstruct_ema = gen(z_gen_ema, is_training=is_training_pl, getter=get_getter(gen_ema), reuse=True) with tf.variable_scope('discriminator_model'): l_encoder_ema, inter_layer_inp_ema = dis(z_gen_ema, input_pl, is_training=is_training_pl, getter=get_getter(dis_ema), reuse=True) l_generator_ema, inter_layer_rct_ema = dis(z_gen_ema, reconstruct_ema, is_training=is_training_pl, getter=get_getter(dis_ema), reuse=True) with tf.name_scope('Testing'): with tf.variable_scope('Reconstruction_loss'): delta = input_pl - reconstruct_ema delta_flat = tf.contrib.layers.flatten(delta) gen_score = tf.norm(delta_flat, ord=degree, axis=1, keep_dims=False, name='epsilon') with tf.variable_scope('Discriminator_loss'): if method == "cross-e": dis_score = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(l_generator_ema), logits=l_generator_ema) elif method == "fm": fm = inter_layer_inp_ema - inter_layer_rct_ema fm = tf.contrib.layers.flatten(fm) dis_score = tf.norm(fm, ord=degree, axis=1, keep_dims=False, name='d_loss') dis_score = tf.squeeze(dis_score) with tf.variable_scope('Score'): list_scores = (1 - weight) * gen_score + weight * dis_score logdir = create_logdir(weight, method, random_seed) sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=None, save_model_secs=120) logger.info('Start training...') with sv.managed_session() as sess: logger.info('Initialization done') writer = tf.summary.FileWriter(logdir, sess.graph) train_batch = 0 epoch = 0 while not sv.should_stop() and epoch < nb_epochs: lr = starting_lr begin = time.time() # construct randomly permuted minibatches trainx = trainx[rng.permutation( trainx.shape[0])] # shuffling dataset trainx_copy = trainx_copy[rng.permutation(trainx.shape[0])] train_loss_dis, train_loss_gen, train_loss_enc = [0, 0, 0] # training for t in range(nr_batches_train): display_progression_epoch(t, nr_batches_train) ran_from = t * batch_size ran_to = (t + 1) * batch_size # train discriminator feed_dict = { input_pl: trainx[ran_from:ran_to], is_training_pl: True, learning_rate: lr } _, ld, sm = sess.run( [train_dis_op, loss_discriminator, sum_op_dis], feed_dict=feed_dict) train_loss_dis += ld writer.add_summary(sm, train_batch) # train generator and encoder feed_dict = { input_pl: trainx_copy[ran_from:ran_to], is_training_pl: True, learning_rate: lr } _, _, le, lg, sm = sess.run([ train_gen_op, train_enc_op, loss_encoder, loss_generator, sum_op_gen ], feed_dict=feed_dict) train_loss_gen += lg train_loss_enc += le writer.add_summary(sm, train_batch) train_batch += 1 train_loss_gen /= nr_batches_train train_loss_enc /= nr_batches_train train_loss_dis /= nr_batches_train logger.info('Epoch terminated') print( "Epoch %d | time = %ds | loss gen = %.4f | loss enc = %.4f | loss dis = %.4f " % (epoch, time.time() - begin, train_loss_gen, train_loss_enc, train_loss_dis)) epoch += 1 logger.warn('Testing evaluation...') inds = rng.permutation(testx.shape[0]) testx = testx[inds] # shuffling dataset testy = testy[inds] # shuffling dataset scores = [] inference_time = [] # Create scores for t in range(nr_batches_test): # construct randomly permuted minibatches ran_from = t * batch_size ran_to = (t + 1) * batch_size begin_val_batch = time.time() feed_dict = { input_pl: testx[ran_from:ran_to], is_training_pl: False } scores += sess.run(list_scores, feed_dict=feed_dict).tolist() inference_time.append(time.time() - begin_val_batch) logger.info('Testing : mean inference time is %.4f' % (np.mean(inference_time))) ran_from = nr_batches_test * batch_size ran_to = (nr_batches_test + 1) * batch_size size = testx[ran_from:ran_to].shape[0] fill = np.ones([batch_size - size, data.get_shape_input()[1]]) batch = np.concatenate([testx[ran_from:ran_to], fill], axis=0) feed_dict = {input_pl: batch, is_training_pl: False} batch_score = sess.run(list_scores, feed_dict=feed_dict).tolist() scores += batch_score[:size] # Highest 80% are anomalous per = np.percentile(scores, 80) y_pred = scores.copy() y_pred = np.array(y_pred) inds = (y_pred < per) inds_comp = (y_pred >= per) y_pred[inds] = 0 y_pred[inds_comp] = 1 precision, recall, f1, _ = precision_recall_fscore_support( testy, y_pred, average='binary') print("Testing(%d) : Prec = %.4f | Rec = %.4f | F1 = %.4f " % (nc, precision, recall, f1)) content = "Testing(%d) : Prec = %.4f | Rec = %.4f | F1 = %.4f " % ( nc, precision, recall, f1) f1 = open('./output.txt', 'a') f1.write(content + "\r\n")
def train_and_test(nb_epochs, weight, method, degree, random_seed): """ Runs the Bigan on the KDD dataset Note: Saves summaries on tensorboard. To display them, please use cmd line tensorboard --logdir=model.training_logdir() --port=number Args: nb_epochs (int): number of epochs weight (float, optional): weight for the anomaly score composition method (str, optional): 'fm' for ``Feature Matching`` or "cross-e" for ``cross entropy``, "efm" etc. anomalous_label (int): int in range 0 to 10, is the class/digit which is considered outlier """ logger = logging.getLogger("GAN.train.kdd.{}".format(method)) # Placeholders input_pl = tf.placeholder(tf.float32, shape=data.get_shape_input(), name="input") is_training_pl = tf.placeholder(tf.bool, [], name='is_training_pl') learning_rate = tf.placeholder(tf.float32, shape=(), name="lr_pl") # Data trainx, trainy = data.get_train() trainx_copy = trainx.copy() testx, testy = data.get_test() # Parameters starting_lr = network.learning_rate batch_size = network.batch_size latent_dim = network.latent_dim ema_decay = 0.9999 rng = np.random.RandomState(RANDOM_SEED) nr_batches_train = int(trainx.shape[0] / batch_size) nr_batches_test = int(testx.shape[0] / batch_size) logger.info('Building training graph...') logger.warn("The GAN is training with the following parameters:") display_parameters(batch_size, starting_lr, ema_decay, weight, method, degree) gen = network.generator dis = network.discriminator # Sample noise from random normal distribution random_z = tf.random_normal([batch_size, latent_dim], mean=0.0, stddev=1.0, name='random_z') # Generate images with generator generator = gen(random_z, is_training=is_training_pl) # Pass real and fake images into discriminator separately real_d, inter_layer_real = dis(input_pl, is_training=is_training_pl) fake_d, inter_layer_fake = dis(generator, is_training=is_training_pl, reuse=True) with tf.name_scope('loss_functions'): # Calculate seperate losses for discriminator with real and fake images real_discriminator_loss = tf.losses.sigmoid_cross_entropy( tf.constant(1, shape=[batch_size]), real_d, scope='real_discriminator_loss') fake_discriminator_loss = tf.losses.sigmoid_cross_entropy( tf.constant(0, shape=[batch_size]), fake_d, scope='fake_discriminator_loss') # Add discriminator losses discriminator_loss = real_discriminator_loss + fake_discriminator_loss # Calculate loss for generator by flipping label on discriminator output generator_loss = tf.losses.sigmoid_cross_entropy( tf.constant(1, shape=[batch_size]), fake_d, scope='generator_loss') with tf.name_scope('optimizers'): # control op dependencies for batch norm and trainable variables dvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator') gvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator') update_ops_gen = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='generator') update_ops_dis = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='discriminator') optimizer_dis = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='dis_optimizer') optimizer_gen = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='gen_optimizer') with tf.control_dependencies( update_ops_gen): # attached op for moving average batch norm gen_op = optimizer_gen.minimize(generator_loss, var_list=gvars) with tf.control_dependencies(update_ops_dis): dis_op = optimizer_dis.minimize(discriminator_loss, var_list=dvars) dis_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_dis = dis_ema.apply(dvars) with tf.control_dependencies([dis_op]): train_dis_op = tf.group(maintain_averages_op_dis) gen_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_gen = gen_ema.apply(gvars) with tf.control_dependencies([gen_op]): train_gen_op = tf.group(maintain_averages_op_gen) with tf.name_scope('training_summary'): with tf.name_scope('dis_summary'): tf.summary.scalar('real_discriminator_loss', real_discriminator_loss, ['dis']) tf.summary.scalar('fake_discriminator_loss', fake_discriminator_loss, ['dis']) tf.summary.scalar('discriminator_loss', discriminator_loss, ['dis']) with tf.name_scope('gen_summary'): tf.summary.scalar('loss_generator', generator_loss, ['gen']) sum_op_dis = tf.summary.merge_all('dis') sum_op_gen = tf.summary.merge_all('gen') logger.info('Building testing graph...') with tf.variable_scope("latent_variable"): z_optim = tf.get_variable( name='z_optim', shape=[batch_size, latent_dim], initializer=tf.truncated_normal_initializer()) reinit_z = z_optim.initializer # EMA generator_ema = gen(z_optim, is_training=is_training_pl, getter=get_getter(gen_ema), reuse=True) # Pass real and fake images into discriminator separately real_d_ema, inter_layer_real_ema = dis(input_pl, is_training=is_training_pl, getter=get_getter(gen_ema), reuse=True) fake_d_ema, inter_layer_fake_ema = dis(generator_ema, is_training=is_training_pl, getter=get_getter(gen_ema), reuse=True) with tf.name_scope('error_loss'): delta = input_pl - generator_ema delta_flat = tf.contrib.layers.flatten(delta) gen_score = tf.norm(delta_flat, ord=degree, axis=1, keep_dims=False, name='epsilon') with tf.variable_scope('Discriminator_loss'): if method == "cross-e": dis_score = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(fake_d_ema), logits=fake_d_ema) elif method == "fm": fm = inter_layer_real_ema - inter_layer_fake_ema fm = tf.contrib.layers.flatten(fm) dis_score = tf.norm(fm, ord=degree, axis=1, keep_dims=False, name='d_loss') dis_score = tf.squeeze(dis_score) with tf.variable_scope('Total_loss'): loss = (1 - weight) * gen_score + weight * dis_score with tf.variable_scope("Test_learning_rate"): step = tf.Variable(0, trainable=False) boundaries = [300, 400] values = [0.01, 0.001, 0.0005] learning_rate_invert = tf.train.piecewise_constant( step, boundaries, values) reinit_lr = tf.variables_initializer( tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="Test_learning_rate")) with tf.name_scope('Test_optimizer'): optimizer = tf.train.AdamOptimizer(learning_rate_invert).minimize( loss, global_step=step, var_list=[z_optim], name='optimizer') reinit_optim = tf.variables_initializer( tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Test_optimizer')) reinit_test_graph_op = [reinit_z, reinit_lr, reinit_optim] with tf.name_scope("Scores"): list_scores = loss logdir = create_logdir(method, weight, random_seed) sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=None, save_model_secs=120) logger.info('Start training...') with sv.managed_session() as sess: logger.info('Initialization done') writer = tf.summary.FileWriter(logdir, sess.graph) train_batch = 0 epoch = 0 while not sv.should_stop() and epoch < nb_epochs: lr = starting_lr begin = time.time() trainx = trainx[rng.permutation( trainx.shape[0])] # shuffling unl dataset trainx_copy = trainx_copy[rng.permutation(trainx.shape[0])] train_loss_dis, train_loss_gen = [0, 0] # training for t in range(nr_batches_train): display_progression_epoch(t, nr_batches_train) # construct randomly permuted minibatches ran_from = t * batch_size ran_to = (t + 1) * batch_size # train discriminator feed_dict = { input_pl: trainx[ran_from:ran_to], is_training_pl: True, learning_rate: lr } _, ld, sm = sess.run( [train_dis_op, discriminator_loss, sum_op_dis], feed_dict=feed_dict) train_loss_dis += ld writer.add_summary(sm, train_batch) # train generator feed_dict = { input_pl: trainx_copy[ran_from:ran_to], is_training_pl: True, learning_rate: lr } _, lg, sm = sess.run( [train_gen_op, generator_loss, sum_op_gen], feed_dict=feed_dict) train_loss_gen += lg writer.add_summary(sm, train_batch) train_batch += 1 train_loss_gen /= nr_batches_train train_loss_dis /= nr_batches_train logger.info('Epoch terminated') print( "Epoch %d | time = %ds | loss gen = %.4f | loss dis = %.4f " % (epoch, time.time() - begin, train_loss_gen, train_loss_dis)) epoch += 1 logger.warn('Testing evaluation...') inds = rng.permutation(testx.shape[0]) testx = testx[inds] # shuffling unl dataset testy = testy[inds] scores = [] inference_time = [] # Testing for t in range(nr_batches_test): # construct randomly permuted minibatches ran_from = t * batch_size ran_to = (t + 1) * batch_size begin_val_batch = time.time() # invert the gan feed_dict = { input_pl: testx[ran_from:ran_to], is_training_pl: False } for step in range(STEPS_NUMBER): _ = sess.run(optimizer, feed_dict=feed_dict) scores += sess.run(list_scores, feed_dict=feed_dict).tolist() inference_time.append(time.time() - begin_val_batch) sess.run(reinit_test_graph_op) logger.info('Testing : mean inference time is %.4f' % (np.mean(inference_time))) ran_from = nr_batches_test * batch_size ran_to = (nr_batches_test + 1) * batch_size size = testx[ran_from:ran_to].shape[0] fill = np.ones([batch_size - size, 121]) batch = np.concatenate([testx[ran_from:ran_to], fill], axis=0) feed_dict = {input_pl: batch, is_training_pl: False} for step in range(STEPS_NUMBER): _ = sess.run(optimizer, feed_dict=feed_dict) batch_score = sess.run(list_scores, feed_dict=feed_dict).tolist() scores += batch_score[:size] per = np.percentile(scores, 80) y_pred = scores.copy() y_pred = np.array(y_pred) inds = (y_pred < per) inds_comp = (y_pred >= per) y_pred[inds] = 0 y_pred[inds_comp] = 1 precision, recall, f1, _ = precision_recall_fscore_support( testy, y_pred, average='binary') print("Testing : Prec = %.4f | Rec = %.4f | F1 = %.4f " % (precision, recall, f1))
def train_and_test(nb_epochs, weight, method, degree, random_seed): """ Runs the Bigan on the KDD dataset Note: Saves summaries on tensorboard. To display them, please use cmd line tensorboard --logdir=model.training_logdir() --port=number Args: nb_epochs (int): number of epochs weight (float, optional): weight for the anomaly score composition method (str, optional): 'fm' for ``Feature Matching`` or "cross-e" for ``cross entropy``, "efm" etc. anomalous_label (int): int in range 0 to 10, is the class/digit which is considered outlier """ logger = logging.getLogger("BiGAN.train.kdd.{}".format(method)) # Placeholders input_pl = tf.placeholder(tf.float32, shape=data.get_shape_input(), name="input") is_training_pl = tf.placeholder(tf.bool, [], name='is_training_pl') learning_rate = tf.placeholder(tf.float32, shape=(), name="lr_pl") # Data trainx, trainy = data.get_train() trainx_copy = trainx.copy() testx, testy = data.get_test() # Parameters starting_lr_gen = network.learning_rate_gen starting_lr_gen_mine = network.learning_rate_gen_mine starting_lr = network.learning_rate batch_size = network.batch_size latent_dim = network.latent_dim ema_decay = 0.9999 rng = np.random.RandomState(RANDOM_SEED) nr_batches_train = int(trainx.shape[0] / batch_size) nr_batches_test = int(testx.shape[0] / batch_size) logger.info('Building training graph...') logger.warn("The BiGAN is training with the following parameters:") display_parameters(batch_size, starting_lr, ema_decay, weight, method, degree) gen = network.decoder enc = network.encoder dis = network.discriminator with tf.variable_scope('encoder_model'): z_gen = enc(input_pl, is_training=is_training_pl) with tf.variable_scope('generator_model'): z = tf.random_normal([batch_size, latent_dim]) x_gen = gen(z, is_training=is_training_pl) with tf.variable_scope('discriminator_model'): l_encoder, inter_layer_inp = dis(z_gen, input_pl, is_training=is_training_pl) l_generator, inter_layer_rct = dis(z, x_gen, is_training=is_training_pl, reuse=True) with tf.name_scope('loss_functions'): # discriminator loss_dis_enc = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(l_encoder), logits=l_encoder)) loss_dis_gen = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(l_generator), logits=l_generator)) loss_discriminator = loss_dis_gen + loss_dis_enc # generator # loss_generator1 = tf.reduce_mean(tf.keras.losses.MSLE(input_pl,x_gen)) loss_generator1 = tf.reduce_mean(tf.keras.losses.MSE(input_pl, x_gen)) # loss_generator1 = tf.reduce_mean(tf.keras.losses.KLD(input_pl,x_gen)) # loss_generator1 = tf.reduce_mean(-(x_gen.log_prob(input_pl))) #layerlari probability yapip bunu yazsam olacak mi acaba!!!!!?????? loss_generator = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(l_generator), logits=l_generator)) #loss_generator = loss_generator = loss_generator1 # encoder loss_encoder = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(l_encoder), logits=l_encoder)) with tf.name_scope('optimizers'): # control op dependencies for batch norm and trainable variables tvars = tf.trainable_variables() dvars = [var for var in tvars if 'discriminator_model' in var.name] gvars = [var for var in tvars if 'generator_model' in var.name] evars = [var for var in tvars if 'encoder_model' in var.name] update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) update_ops_gen = [ x for x in update_ops if ('generator_model' in x.name) ] update_ops_enc = [x for x in update_ops if ('encoder_model' in x.name)] update_ops_dis = [ x for x in update_ops if ('discriminator_model' in x.name) ] optimizer_dis = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='dis_optimizer') optimizer_gen = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='gen_optimizer') optimizer_enc = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='enc_optimizer') optimizer_gen1 = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, name='gen_optimizer1') with tf.control_dependencies(update_ops_gen): gen_op = optimizer_gen.minimize(loss_generator, var_list=gvars) with tf.control_dependencies(update_ops_gen): gen_op1 = optimizer_gen1.minimize(loss_generator1, var_list=gvars) with tf.control_dependencies(update_ops_enc): enc_op = optimizer_enc.minimize(loss_encoder, var_list=evars) with tf.control_dependencies(update_ops_dis): dis_op = optimizer_dis.minimize(loss_discriminator, var_list=dvars) # Exponential Moving Average for estimation dis_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_dis = dis_ema.apply(dvars) with tf.control_dependencies([dis_op]): train_dis_op = tf.group(maintain_averages_op_dis) gen_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_gen = gen_ema.apply(gvars) with tf.control_dependencies([gen_op]): train_gen_op = tf.group(maintain_averages_op_gen) with tf.control_dependencies([gen_op1]): train_gen_op1 = tf.group(maintain_averages_op_gen) enc_ema = tf.train.ExponentialMovingAverage(decay=ema_decay) maintain_averages_op_enc = enc_ema.apply(evars) with tf.control_dependencies([enc_op]): train_enc_op = tf.group(maintain_averages_op_enc) with tf.name_scope('summary'): with tf.name_scope('dis_summary'): tf.summary.scalar('loss_discriminator', loss_discriminator, ['dis']) tf.summary.scalar('loss_dis_encoder', loss_dis_enc, ['dis']) tf.summary.scalar('loss_dis_gen', loss_dis_gen, ['dis']) with tf.name_scope('gen_summary'): tf.summary.scalar('loss_generator', loss_generator, ['gen']) tf.summary.scalar('loss_generator1', loss_generator1, ['gen1']) tf.summary.scalar('loss_encoder', loss_encoder, ['gen']) sum_op_dis = tf.summary.merge_all('dis') sum_op_gen = tf.summary.merge_all('gen') sum_op_gen1 = tf.summary.merge_all('gen1') logger.info('Building testing graph...') with tf.variable_scope('encoder_model'): z_gen_ema = enc(input_pl, is_training=is_training_pl, getter=get_getter(enc_ema), reuse=True) with tf.variable_scope('generator_model'): reconstruct_ema = gen(z_gen_ema, is_training=is_training_pl, getter=get_getter(gen_ema), reuse=True) with tf.variable_scope('discriminator_model'): l_encoder_ema, inter_layer_inp_ema = dis(z_gen_ema, input_pl, is_training=is_training_pl, getter=get_getter(dis_ema), reuse=True) l_generator_ema, inter_layer_rct_ema = dis(z_gen_ema, reconstruct_ema, is_training=is_training_pl, getter=get_getter(dis_ema), reuse=True) with tf.name_scope('Testing'): with tf.variable_scope('Reconstruction_loss'): delta = input_pl - reconstruct_ema delta_flat = tf.contrib.layers.flatten(delta) gen_score = tf.norm(delta_flat, ord=degree, axis=1, keep_dims=False, name='epsilon') with tf.variable_scope('Discriminator_loss'): if method == "cross-e": dis_score = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(l_generator_ema), logits=l_generator_ema) elif method == "fm": fm = inter_layer_inp_ema - inter_layer_rct_ema fm = tf.contrib.layers.flatten(fm) dis_score = tf.norm(fm, ord=degree, axis=1, keep_dims=False, name='d_loss') dis_score = tf.squeeze(dis_score) with tf.variable_scope('Score'): list_scores = ( 1 - weight ) * gen_score + weight * dis_score # bastaki 0 carpanini kaldir ve dis scoredaki 1 yerine weight yaz logdir = create_logdir(weight, method, random_seed) sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=None, save_model_secs=120) logger.info('Start training...') with sv.managed_session() as sess: logger.info('Initialization done') writer = tf.summary.FileWriter(logdir, sess.graph) train_batch = 0 epoch = 0 lr_gen_mine = starting_lr_gen_mine tt = [] xx = time.time() while not sv.should_stop() and epoch < nb_epochs: lr = starting_lr lr_gen = starting_lr_gen lr_gen_mine = starting_lr_gen_mine begin = time.time() # construct randomly permuted minibatches trainx = trainx[rng.permutation( trainx.shape[0])] # shuffling dataset trainx_copy = trainx_copy[rng.permutation(trainx.shape[0])] train_loss_dis, train_loss_gen, train_loss_enc, train_loss_gen1 = [ 0, 0, 0, 0 ] print('newloss running') # training zz = [] if epoch == 0: xy = time.time() trainx = trainx[rng.permutation( trainx.shape[0])] # shuffling dataset trainx_copy = trainx_copy[rng.permutation(trainx.shape[0])] train_loss_gen1 = 0 for k in range(100): kk = time.time() for t in range(nr_batches_train): #display_progression_epoch(t, nr_batches_train) ran_from = t * batch_size ran_to = (t + 1) * batch_size # # pretrain generator feed_dict = { input_pl: trainx_copy[ran_from:ran_to], is_training_pl: True, learning_rate: lr_gen_mine } _, lg1, sm1 = sess.run( [train_gen_op1, loss_generator1, sum_op_gen1], feed_dict=feed_dict) zz.extend([time.time() - kk]) print(k) print('mean :', np.mean(zz)) print('std :', np.std(zz)) print(time.time() - xy) if epoch > 0: for t in range(nr_batches_train): display_progression_epoch(t, nr_batches_train) ran_from = t * batch_size ran_to = (t + 1) * batch_size # train discriminator feed_dict = { input_pl: trainx[ran_from:ran_to], is_training_pl: True, learning_rate: lr } _, ld, sm = sess.run( [train_dis_op, loss_discriminator, sum_op_dis], feed_dict=feed_dict) train_loss_dis += ld writer.add_summary(sm, train_batch) # train generator and encoder feed_dict = { input_pl: trainx_copy[ran_from:ran_to], is_training_pl: True, learning_rate: lr_gen } _, _, le, lg, sm = sess.run([ train_gen_op, train_enc_op, loss_encoder, loss_generator, sum_op_gen ], feed_dict=feed_dict) # mine feed_dict = { input_pl: trainx_copy[ran_from:ran_to], is_training_pl: True, learning_rate: lr_gen_mine } _, lg1, sm1 = sess.run( [train_gen_op1, loss_generator1, sum_op_gen1], feed_dict=feed_dict) #lg1 = 0 train_loss_gen1 += lg1 train_loss_gen += lg train_loss_enc += le writer.add_summary(sm, train_batch) train_batch += 1 train_loss_gen /= nr_batches_train train_loss_gen1 /= nr_batches_train train_loss_enc /= nr_batches_train train_loss_dis /= nr_batches_train print( "Epoch %d | time = %.4fs | loss gen = %.4f | loss gen1 = %.4f| loss enc = %.4f | loss dis = %.4f " % (epoch, time.time() - begin, train_loss_gen, train_loss_gen1, train_loss_enc, train_loss_dis)) tt.extend([time.time() - begin]) epoch += 1 print(time.time() - xx) print('mean :', np.mean(tt)) print('std :', np.std(tt)) logger.warn('Testing evaluation...') inds = rng.permutation(testx.shape[0]) testx = testx[inds] # shuffling dataset testy = testy[inds] # shuffling dataset scores = [] inference_time = [] # Create scores for t in range(nr_batches_test): # construct randomly permuted minibatches ran_from = t * batch_size ran_to = (t + 1) * batch_size begin_val_batch = time.time() feed_dict = { input_pl: testx[ran_from:ran_to], is_training_pl: False } scores += sess.run(list_scores, feed_dict=feed_dict).tolist() inference_time.append(time.time() - begin_val_batch) logger.info('Testing : mean inference time is %.4f' % (np.mean(inference_time))) ran_from = nr_batches_test * batch_size ran_to = (nr_batches_test + 1) * batch_size size = testx[ran_from:ran_to].shape[0] fill = np.ones([batch_size - size, 39]) batch = np.concatenate([testx[ran_from:ran_to], fill], axis=0) feed_dict = {input_pl: batch, is_training_pl: False} batch_score = sess.run(list_scores, feed_dict=feed_dict).tolist() scores += batch_score[:size] # Highest 80% are anomalous per = np.percentile(scores, 50) res = pd.concat([pd.Series(scores), pd.Series(testy)], axis=1) #res.to_csv('/Users/oguzkaplan/Documents/repo/thesis/notebooks/bigan_kdd_scores_newloss_method1_corr_32_egbad_like.csv') y_pred = scores.copy() y_pred = np.array(y_pred) inds = (y_pred < per) inds_comp = (y_pred >= per) y_pred[inds] = 1 y_pred[inds_comp] = 0 precision, recall, f1, _ = precision_recall_fscore_support( testy, y_pred, average='binary') from sklearn.metrics import accuracy_score acc = accuracy_score(testy, y_pred) print("Testing : Prec = %.4f | Rec = %.4f | F1 = %.4f | Acc = %.4f" % (precision, recall, f1, acc))
return args args = parse_args() ################################################# # Create Directories ################################################# root = Path(args.save_path) if root.exists(): os.system("rm -rf %s" % str(root)) root.mkdir() (root / "models").mkdir() writer = SummaryWriter(str(root)) ################################################# train_set = get_train()[0] test_set = get_test() netG = Generator(args.z_dim).cuda() netE = EnergyModel().cuda() netH = StatisticsNetwork(args.z_dim).cuda() params = {"lr": 1e-4, "betas": (0.5, 0.9)} optimizerE = torch.optim.Adam(netE.parameters(), **params) optimizerG = torch.optim.Adam(netG.parameters(), **params) optimizerH = torch.optim.Adam(netH.parameters(), **params) ################################################## start_time = time.time() e_costs = []