def load_dataset(dataset, data_root_x, max_step, image_width, data_type): if dataset == 'moving_mnist': train_data = MovingMNIST(train=True, data_root=data_root_x, seq_len=max_step, image_size=image_width, num_digits=2) test_data = MovingMNIST(train=False, data_root=data_root_x, seq_len=max_step, image_size=image_width, num_digits=2) elif dataset == 'suncg': train_data = suncg.SUNCG(train=True, data_root=data_root_x, seq_len=max_step, image_size=image_width) test_data = suncg.SUNCG(train=False, data_root=data_root_x, seq_len=max_step, image_size=image_width) elif dataset == 'kth': train_data = KTH(train=True, data_root=data_root_x, seq_len=max_step, image_size=image_width, data_type=data_type) test_data = KTH(train=False, data_root=data_root_x, seq_len=max_step, image_size=image_width, data_type=data_type) return train_data, test_data
def load_dataset(opt): if opt.dataset == 'mnist': train_data = MovingMNIST(train=True, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, num_digits=2) test_data = MovingMNIST(train=False, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, num_digits=2) elif opt.dataset == 'suncg': train_data = suncg.SUNCG(train=True, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width) test_data = suncg.SUNCG(train=False, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width) elif opt.dataset == 'kth': train_data = KTH(train=True, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, data_type=opt.data_type) test_data = KTH(train=False, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, data_type=opt.data_type) return train_data, test_data
def load_dataset(config, train): """ Loads a dataset. Parameters ---------- config : DotDict Configuration to use. train : bool Whether to load the training or testing dataset. """ name = config.dataset if name == 'smmnist': from data.mmnist import MovingMNIST return MovingMNIST.make_dataset(config.data_dir, config.nx, config.seq_len, config.max_speed, config.deterministic, config.ndigits, train) if name == 'kth': from data.kth import KTH return KTH.make_dataset(config.data_dir, config.nx, config.seq_len, train) if name == 'human': from data.human import Human return Human.make_dataset(config.data_dir, config.nx, config.seq_len, config.subsampling, train) if name == 'bair': from data.bair import Bair return Bair.make_dataset(config.data_dir, config.seq_len, train) raise ValueError(f'No dataset named `{name}`')
def load_dataset(config, train): """ Loads a dataset. Parameters ---------- config : helper.DotDict Configuration to use. train : bool Whether to load the training or testing dataset. Returns ------- data.base.VideoDataset Dataset corresponding to the input configuration. """ name = config.dataset if name == 'smmnist': from data.mmnist import MovingMNIST return MovingMNIST.make_dataset(config.data_dir, config.nx, config.seq_len, config.max_speed, config.deterministic, config.ndigits, train) if name == 'kth': from data.kth import KTH return KTH.make_dataset(config.data_dir, config.nx, config.seq_len, train) if name == 'human': from data.human import Human return Human.make_dataset(config.data_dir, config.nx, config.seq_len, config.subsampling, train) if name == 'bair': from data.bair import BAIR return BAIR.make_dataset(config.data_dir, config.seq_len, train) raise ValueError(f'No dataset named \'{name}\'')
def load_dataset(opt): if opt.dataset == 'smmnist': from data.moving_mnist import MovingMNIST train_data = MovingMNIST( train=True, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, deterministic=False, num_digits=opt.num_digits) test_data = MovingMNIST( train=False, data_root=opt.data_root, seq_len=opt.n_eval, image_size=opt.image_width, deterministic=False, num_digits=opt.num_digits) elif opt.dataset == 'bair': from data.bair import RobotPush train_data = RobotPush( data_root=opt.data_root, train=True, seq_len=opt.max_step, image_size=opt.image_width) test_data = RobotPush( data_root=opt.data_root, train=False, seq_len=opt.n_eval, image_size=opt.image_width) elif opt.dataset == 'KTH': from data.kth import KTH train_data = KTH( root=opt.data_root, train=True, seq_len=opt.max_step, label="./label/train.txt") test_data = KTH( root=opt.data_root, train=False, seq_len=opt.max_step, label="./label/test.txt") return train_data, test_data
def load_dataset(opt): if opt.dataset == 'smmnist': from data.moving_mnist import MovingMNIST train_data = MovingMNIST( train=True, data_root=opt.data_root, seq_len=opt.n_past+opt.n_future, image_size=opt.image_width, deterministic=False, num_digits=opt.num_digits) test_data = MovingMNIST( train=False, data_root=opt.data_root, seq_len=opt.n_eval, image_size=opt.image_width, deterministic=False, num_digits=opt.num_digits) elif opt.dataset == 'bair': from data.bair import RobotPush train_data = RobotPush( data_root=opt.data_root, train=True, seq_len=opt.n_past+opt.n_future, image_size=opt.image_width) test_data = RobotPush( data_root=opt.data_root, train=False, seq_len=opt.n_eval, image_size=opt.image_width) elif opt.dataset == 'kth': from data.kth import KTH train_data = KTH( train=True, data_root=opt.data_root, seq_len=opt.n_past+opt.n_future, image_size=opt.image_width) test_data = KTH( train=False, data_root=opt.data_root, seq_len=opt.n_eval, image_size=opt.image_width) return train_data, test_data
def load_dataset(dataset): if dataset == 'mmnist': from data.moving_mnist import MovingMNIST train_data = MovingMNIST(train=True) elif dataset == 'kth': from data.kth import KTH train_data = KTH(train=True) elif dataset == 'mazes': from data.mazes import Mazes train_data = Mazes() return train_data
def load_data(opt): """ :return: raw data """ if opt.dataset == 'moving_mnist': train_data = MovingMNIST(train=True, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, num_digits=2) test_data = MovingMNIST(train=False, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, num_digits=2) elif opt.dataset == 'suncg': train_data = suncg.SUNCG(train=True, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width) test_data = suncg.SUNCG(train=False, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width) elif opt.dataset == 'kth': train_data = KTH(train=True, epoch_samples=opt.epoch_size, pose=opt.pose, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, data_type=opt.data_type) test_data = KTH(train=False, epoch_samples=opt.epoch_size, pose=opt.pose, data_root=opt.data_root, seq_len=opt.max_step, image_size=opt.image_width, data_type=opt.data_type) return train_data, test_data
def load_dataset(dataset): if dataset == 'mmnist': from data.moving_mnist import MovingMNIST # train_data = MovingMNIST(train=True, data_root='../data/mmnist/mnist_test_set.npy') train_data = MovingMNIST( train=True, data_root='../data/mmnist/mnist_training_set.npy') elif dataset == 'kth': from data.kth import KTH train_data = KTH(train=True) elif dataset == 'mazes': from data.mazes import Mazes train_data = Mazes(data_root='../data/mazes/np_mazes_train.npy') return train_data
def load_dataset(opt): if opt.data == 'moving_mnist': train_data = MovingMNIST(train=True, seq_len=opt.max_step, image_size=opt.image_width, num_digits=2) test_data = MovingMNIST(train=False, seq_len=opt.max_step, image_size=opt.image_width, num_digits=2) load_workers = 5 elif opt.data == 'suncg': train_data = suncg.SUNCG(True, opt.max_step, opt.image_width) test_data = suncg.SUNCG(False, opt.max_step, opt.image_width) load_workers = 5 elif opt.data == 'suncg_dual': train_data = suncg.DualSUNCG(opt.max_step, opt.image_width) test_data = suncg.DualSUNCG(opt.max_step, opt.image_width) load_workers = 5 elif opt.data == 'kth': train_data = KTH(True, opt.max_step, opt.image_width) test_data = KTH(False, opt.max_step, opt.image_width) load_workers = 0 return train_data, test_data, load_workers