from data.load import load
import matplotlib.pyplot as plt
import numpy as np

data = load().ekg()[0:1000]


windowSize = 100
leftOffset = 50
rightOffset = 50

start = leftOffset
end = data.shape[0] - rightOffset

windows = np.zeros(shape=(end - start, windowSize))
#stft = np.zeros(shape=(end - start, windowSize))
for n in range(start, end):
    windows[n-start, :] = data[n - leftOffset:n + rightOffset]
    #stft[n - start, :] = np.fft.fft(np.hamming(windowSize) * windowVals)

print('')

corrThreshold = 0.9







from data.load import load

data = load().ekg()


from external.luminol.src import luminol






Exemplo n.º 3
0
# clusterer.fit(stfts)
#
#
# plt.plot(data)
#
# labelsX = np.array(range(start,end))
# plt.plot(labelsX, 100*(clusterer.labels_-5))
# plt.show()



if __name__ == '__main__':
    from data.load import load
    import matplotlib.pyplot as plt

    data = load().TICC()[:, 0]  # just do univariate for now
    data = load().ekg()  # already univariate


    model = STFT_Cluster(n_clusters=10, windowSize=100)
    model.fit_predict(data[0:5000])

    plt.figure()
    plt.plot(data[0:5000])
    plt.plot(100*(model.labels_-5))

    # plt.figure()
    # results = model.predict(data[5000:6000])
    # plt.plot(data[5000:6000])
    #
    # plt.plot((results-25))
Exemplo n.º 4
0
from distance.traj_dist.frechet import frechet
from distance.traj_dist.sspd import e_sspd
from distance.traj_dist.hausdorff import e_hausdorff

from distance.eros import eros

plotSamples = False

runLCSS = False
runDiscretFretchet = False
runFretchet = False
runSSPD = False
runHausdorff = False
runEros = True

allSamples = load().auslan()

wantedLabels = ['how-1', 'how-2', 'how-3', 'answer-3']



samples = []
sampleLabels = []

for label in list(allSamples.keys()):
    data = allSamples[label]

    #x1, y1, z1 = data['x1'].values, data['y1'].values, data['z1'].values

    sample = data[['x1','y1','z1']].values
    sampleLabels.append(label)
Exemplo n.º 5
0
    if segmentType == 'interpolate':
        segmenting = fit.interpolate
    elif segmentType == 'regression':
        segmenting = fit.regression
    else:
        raise ValueError('Unknown segmenting type')

    return window(data, segmenting, error, maxError)



if __name__ == '__main__':
    from data.load import load

    data = load().s_and_p500()
    data = load().TICC()

    segments = PLA(data[:,0], windowScale=1000, windowingType='bottom up', segmentType='interpolate')

    print(segments)

    import matplotlib.pyplot as plt
    plt.plot(data[:,0])

    for seg in segments:
        plt.plot( [seg[0], seg[2]], [seg[1], seg[3]], c='r')

    plt.show()