Exemplo n.º 1
0
def get_type(aggregate_id):
    query = """SELECT type_id FROM aggregate_type WHERE aggregate_id = :agg """

    session = get_session()
    t = session.execute(query, {'agg': aggregate_id}).first()[0]
    session.close()
    return t
Exemplo n.º 2
0
def get_aggregate_ids():
    query = """SELECT DISTINCT aggregate_id
               FROM run
               WHERE no_banks >= 200
               """
    session = get_session()
    agg_ids = session.execute(
        query).fetchall()
    session.close()
    return [a[0] for a in agg_ids]
Exemplo n.º 3
0
    def save_default_participants(self):
        dps = []
        for did in self.defaults:
            for (bank_id, balance, root) in self.default_participants[did]:
                dps.append(
                    BankDefaultModel(did, bank_id, balance, root, self.run_id))

        prev = 0
        for x in range(0, len(dps), 40000):
            ses = get_session()
            ses.bulk_save_objects(dps[prev:x])
            prev = x
            ses.commit()
            ses.close

        if (len(dps[prev:]) > 0):
            ses = get_session()
            ses.bulk_save_objects(dps[x:])
            ses.commit()
            ses.close()
Exemplo n.º 4
0
    def save_banks(self):
        bnks = []
        if (len(self.banks) > 0):
            for bank in self.banks:
                b = BankModel(bank, self.run_id, self.banks[bank])
                bnks.append(b)

            ses = get_session()
            ses.bulk_save_objects(bnks)
            ses.commit()
            ses.close()
Exemplo n.º 5
0
    def save_swaps(self):
        swp_objs = []
        for sid in self.swaps:
            (float_id, fix_id, value, start, end, tenure) = self.swaps[sid]
            swp_objs.append(
                SwapModel(sid, value, float_id, fix_id, start, end, tenure,
                          self.run_id))

        prev = 0
        for x in range(0, len(swp_objs), 40000):
            ses = get_session()
            ses.bulk_save_objects(swp_objs[prev:x])
            ses.commit()
            ses.close()
            prev = x

        if (len(swp_objs[prev:]) > 0):
            ses = get_session()
            ses.bulk_save_objects(swp_objs[x:])
            ses.commit()
            ses.close()
Exemplo n.º 6
0
def get_data(no_banks):
    query = """ 
    SELECT DISTINCT r.aggregate_id, r.threshold, da.size
    FROM run r
    INNER JOIN default_aggregate da ON da.aggregate_id = r.aggregate_id
    WHERE r.no_banks = :no_banks
    ORDER BY r.aggregate_id, size
    """
    session = get_session()
    data = session.execute(query, {'no_banks': no_banks}).fetchall()
    session.close()
    return data
Exemplo n.º 7
0
def get_aggregate_id(b, t, irst, ten):
    print b, t, irst, ten
    query = """SELECT aggregate_id
               FROM run
               WHERE threshold = :threshold and no_banks = :no_banks
                     and max_irs_value = :irs_val and max_tenure = :ten
               LIMIT 1"""
    session = get_session()
    agg_id = session.execute(query, {
        'threshold': t,
        'no_banks': b,
        'irs_val': irst,
        'ten': ten
    }).first()[0]
    session.close()
    return agg_id
Exemplo n.º 8
0
    def save_defaults(self):
        print "Saving avalanche data"
        query = """INSERT INTO default_aggregate (aggregate_id, frequency, size)
           VALUES (:aggregate_id, :freq, :size)
           ON DUPLICATE KEY UPDATE frequency = frequency + :freq"""

        session = get_session()

        for dkey in self.defaults:
            session.execute(
                query, {
                    'aggregate_id': self.aggregate_id,
                    'freq': self.defaults[dkey],
                    'size': dkey
                })

        session.commit()
        session.close()
Exemplo n.º 9
0
def get_no_defaults(no_banks, threshold, irs_value, tenure):
    query = """SELECT r.aggregate_id, max_tenure, max_irs_value, threshold, sum(da.frequency)
               FROM run as r
               INNER JOIN default_aggregate as da ON da.aggregate_id = r.aggregate_id
               WHERE no_banks = :no_banks AND threshold  = :threshold
               AND max_irs_value = :max_irs_value AND max_tenure = :max_tenure
               GROUP BY r.aggregate_id, r.max_irs_value, r.max_tenure, r.threshold
               """
    session = get_session()
    info = session.execute(
        query, {
            'no_banks': no_banks,
            'max_tenure': tenure,
            'threshold': threshold,
            'max_irs_value': irs_value,
        }).first()
    session.close()
    return info
Exemplo n.º 10
0
    def save_run(self):
        ses = get_session()

        avgswaps = len(self.swaps) / (self.config['model']['no_steps'] *
                                      self.config['model']['no_banks'])

        run = RunModel(self.run_id, self.aggregate_id,
                       self.config['model']['no_steps'],
                       self.config['model']['no_banks'],
                       self.config['model']['sigma'],
                       self.config['model']['irs_threshold'],
                       self.config['model']['max_irs_value'],
                       self.config['model']['max_tenure'],
                       self.config['model']['threshold'], self.time_stamp,
                       self.seed, self.config['market_type'], avgswaps,
                       len(self.swaps), self.config['model']['dissipation'])

        ses.bulk_save_objects([run])

        ses.commit()
        ses.close()
Exemplo n.º 11
0
"""Checking if we could create some collapse based on size. (hardcoded data in here)"""
from __future__ import division

import math
import numpy as np
import matplotlib.pyplot as plt

from collections import defaultdict

from data.models import SwapModel, DefaultModel, RunModel, get_session
from heatmap import get_runs, get_defaults

if __name__ == '__main__':
    root_path = "./data_collapse"
    session = get_session()
    aggregate_ids = ['0772393d-881a-4895-9b8e-f9857a34aefc',
                     '67638748-c9d1-49ec-8b09-731a8a5cc383',
                     '98367a5d-4a69-444b-9011-148174cb94c3',
                     '5a846dd4-266e-414f-96ea-1b5fbf1c05c7',
                     '8ca7029f-7f6e-41e2-8775-2655a34b9fec']

    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlim((0.01,1))

    cnt = 0
    exponent = 2.55

    for aggregate_id in aggregate_ids:
Exemplo n.º 12
0
"""
Comparing distributions (powerlaw, lognormal and exponential).
"""

from __future__ import division

import numpy as np
import matplotlib.pyplot as pplot
import powerlaw

from analyse_hump import *
from data.models import get_session

if __name__ == '__main__':
    ses = get_session()
    aggs = ses.execute(
        'SELECT DISTINCT aggregate_id FROM run WHERE aggregate_id = \'452b894a-2aff-4d36-a58c-b15bb0219d7a\''
    ).fetchall()
    ses.close()

    pvalues_lognormal = np.zeros(len(aggs))
    Rvalues_lognormal = np.zeros(len(aggs))

    pvalues_lognormal_pos = np.zeros(len(aggs))
    Rvalues_lognormal_pos = np.zeros(len(aggs))

    pvalues_exponential = np.zeros(len(aggs))
    Rvalues_exponential = np.zeros(len(aggs))

    for i, res in enumerate(aggs):
        aggregate_id = res[0]