Exemplo n.º 1
0
#output_path = join('output', args.experiment_name, 'anongroup_reshape_10_13_' + imgfolder + '_' + str(iteration))
output_path = join('output', args.experiment_name,
                   'testanonymizer_' + imgfolder + '_' + str(iteration))

names = []
distances = []
iterations = []

attValues = []
distanceDelta = []

#output_path = join('output', args.experiment_name, 'sample_testing_single_tmp' + str(args.test_atts))
#output_path = join('output', args.experiment_name, 'attrib_revert_customdata_wider_handshake_2' + str(args.test_atts))
from data import Custom
test_dataset = Custom(args.custom_data, args.custom_attr, args.img_size,
                      args.attrs)

#from data import CelebA
#test_dataset = CelebA(args.data_path, args.attr_path, args.img_size, 'test', args.attrs)

os.makedirs(output_path, exist_ok=True)
test_dataloader = data.DataLoader(test_dataset,
                                  batch_size=1,
                                  num_workers=args.num_workers,
                                  shuffle=False,
                                  drop_last=False)
if args.num_test is None:
    print('Testing images:', len(test_dataset))
else:
    print('Testing images:', min(len(test_dataset), args.num_test))
Exemplo n.º 2
0
args.gpu = args_.gpu
args.by_levels = args_.by_levels
args.load_epoch = args_.load_epoch
args.custom_img = args_.custom_img
args.custom_data = args_.custom_data
args.custom_attr = args_.custom_attr
args.n_attrs = len(args.attrs)
args.betas = (args.beta1, args.beta2)

print(args)


if args.custom_img:
    output_path = join('output', args.experiment_name, 'custom_testing')
    from data import Custom
    test_dataset = Custom(args.custom_data, args.custom_attr, args.img_size, 'test', args.attrs)
else:
    output_path = join('output', args.experiment_name, 'sample_testing')
    if args.data == 'CelebA':
        from data import CelebA
        test_dataset = CelebA(args.data_path, args.attr_path, args.img_size, 'test', args.attrs)
    if args.data == 'CelebA-HQ':
        from data import CelebA_HQ
        test_dataset = CelebA_HQ(args.data_path, args.attr_path, args.image_list_path, args.img_size, 'test', args.attrs)
os.makedirs(output_path, exist_ok=True)
test_dataloader = data.DataLoader(
    test_dataset, batch_size=1, num_workers=args.num_workers,
    shuffle=False, drop_last=False
)
if args.num_test is None:
    print('Testing images:', len(test_dataset))
Exemplo n.º 3
0
    from data import CelebA
    train_dataset = CelebA(args.data_path, args.attr_path, args.img_size,
                           'train', args.attrs)
    valid_dataset = CelebA(args.data_path, args.attr_path, args.img_size,
                           'valid', args.attrs)
if args.data == 'CelebA-HQ':
    from data import CelebA_HQ
    train_dataset = CelebA_HQ(args.data_path, args.attr_path,
                              args.image_list_path, args.img_size, 'train',
                              args.attrs)
    valid_dataset = CelebA_HQ(args.data_path, args.attr_path,
                              args.image_list_path, args.img_size, 'valid',
                              args.attrs)
if args.data == 'Custom':
    from data import Custom
    train_dataset = Custom(args.data_path, args.attr_path, args.img_size,
                           'train', attrs_custom_default)
    valid_dataset = Custom(args.data_path, args.attr_path, args.img_size,
                           'valid', attrs_custom_default)
train_dataloader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   num_workers=args.num_workers,
                                   shuffle=True,
                                   drop_last=True)
valid_dataloader = data.DataLoader(valid_dataset,
                                   batch_size=args.n_samples,
                                   num_workers=args.num_workers,
                                   shuffle=False,
                                   drop_last=False)
print('Training images:', len(train_dataset), '/', 'Validating images:',
      len(valid_dataset))