Exemplo n.º 1
0
def get_and_log_mst_weight_from_checker(input_graph, force_recompute=False, inputslogfn=None):
    """Returns the a 2-tuple of (input, weight).  If force_recompute is not
    True, then it will check the input log cache to see if we already know the
    answer first.  Logs the result."""
    ti = __get_ti(input_graph)

    # load in the inputs in the category of input_graph
    if inputslogfn is None:
        logfn = InputSolution.get_path_to(ti.prec, ti.dims, ti.min, ti.max)
    else:
        logfn = inputslogfn
    ds = DataSet.read_from_file(InputSolution, logfn)
    if ds.dataset.has_key(ti):
        input_soln = ds.dataset[ti]
        do_log = True

        # see if we already know the answer
        if not force_recompute:
            if input_soln.has_mst_weight():
                return (ti, input_soln.mst_weight)  # cache hit!
    else:
        # if we weren't tracking the input before, don't start now
        do_log = False

    # compute the answer and (if specified) save it
    w = compute_mst_weight(input_graph)
    if do_log:
        if input_soln.update_mst_weight(w):
            ds.save_to_file(logfn)
    return (ti, w)
Exemplo n.º 2
0
def main():
    usage = """usage: %prog [options]
Searches for missing results and uses run_test.py to collect it."""
    parser = OptionParser(usage)
    parser.add_option("-i", "--input_graph",
                      metavar="FILE",
                      help="restrict the missing data check to the specified input graph")
    parser.add_option("-l", "--inputs-list-file",
                      metavar="FILE",
                      help="collect data for all inputs in the specified log file")
    parser.add_option("--list-only",
                      action="store_true", default=False,
                      help="only list missing data (do not collect it)")
    parser.add_option("-n", "--num-runs",
                      type="int", default="1",
                      help="number of desired runs per revision-input combination [default: 1]")
    parser.add_option("-r", "--rev",
                      help="restrict the missing data check to the specified revision, or 'all' [default: current]")

    group = OptionGroup(parser, "Data Collection Options")
    group.add_option("-p", "--performance",
                      action="store_true", default=True,
                      help="collect performance data (this is the default)")
    group.add_option("-c", "--correctness",
                      action="store_true", default=False,
                      help="collect correctness data")
    parser.add_option_group(group)

    group2 = OptionGroup(parser, "Weight (Part II) Data Collection Options")
    group2.add_option("-v", "--num_vertices",
                      metavar="V", type="int", default=0,
                      help="collect weight data for V vertices (requires -d or -e)")
    group2.add_option("-d", "--dims",
                      metavar="D", type="int", default=0,
                      help="collect weight data for randomly positioned vertices in D-dimensional space (requires -v)")
    group2.add_option("-e", "--edge",
                      action="store_true", default=False,
                      help="collect weight data for random uniform edge weights in the range (0, 1] (requires -v)")
    parser.add_option_group(group2)

    (options, args) = parser.parse_args()
    if len(args) > 0:
        parser.error("too many arguments")

    if options.num_runs < 1:
        parser.error("-n must be at least 1")
    input_solns = None

    # prepare for a weight data collection
    num_on = 0
    weight_test = False
    if options.num_vertices > 0:
        weight_test = True
        if options.input_graph or options.inputs_list_file:
            parser.error('-i, -l, and -v are mutually exclusive')

        if options.dims > 0:
            num_on += 1
            wtype = 'loc%u' % options.dims

        if options.edge:
            num_on += 1
            wtype = 'edge'

        if num_on == 0:
            parser.error('-v requires either -d or -e be specified too')

        if options.num_runs > 1:
            options.num_runs = 1
            print 'warning: -v truncates the number of runs to 1 (weight should not change b/w runs)'

        input_path = InputSolution.get_path_to(15, options.dims, 0.0, 1.0)
        print 'reading inputs to run on from ' + input_path
        input_solns = DataSet.read_from_file(InputSolution, input_path)
        revs = [None] # not revision-specific (assuming our alg is correct)
        get_results_for_rev = lambda _ : DataSet.read_from_file(WeightResult, WeightResult.get_path_to(wtype))
        collect_missing_data = collect_missing_weight_data
    elif options.dims > 0 or options.edge:
        parser.error('-v is required whenever -d or -e is used')

    # handle -i, -l: collect data for a particular graph(s)
    if options.input_graph and options.inputs_list_file:
        parser.error('-i and -l are mutually exclusive')
    if options.input_graph is not None:
        try:
            i = extract_input_footer(options.input_graph)
        except ExtractInputFooterError, e:
            parser.error(e)
        input_solns = DataSet({0:InputSolution(i.prec,i.dims,i.min,i.max,i.num_verts,i.num_edges,i.seed)})
Exemplo n.º 3
0
        options.inputs_list_file_arg = '' if options.inputs_list_file is None else ' -l ' + options.inputs_list_file
        collect_missing_data = lambda w,x,y,z: collect_missing_correctness_data(w,x,y,z,options.inputs_list_file_arg)

    # make sure no more than 1 type of data collection was specified
    if num_on > 1:
        parser.error('at most one of -c, -d, and -e may be specified')
    elif num_on == 0:
        # prepare for a performance data collection (default if nothing else is specified)
        get_results_for_rev = lambda rev : DataSet.read_from_file(PerfResult, PerfResult.get_path_to(rev))
        collect_missing_data = collect_missing_performance_data

    # prepare the inputs and revisions for non-weight data collection schemes
    if options.num_vertices == 0:
        # get all performance inputs if we are not collecting for a single graph
        if input_solns is None:
            input_path = InputSolution.get_path_to(1, 0, 0, 100000)
            input_solns = DataSet.read_from_file(InputSolution, input_path)

        # prepare the revisions to collect data for
        if options.rev is not None:
            if options.rev.lower() == 'all':
                revs = get_tracked_revs()
            else:
                revs = [options.rev]
        else:
            revs = ['current'] # just use the current revision

    # pull out just the Input object (results are keyed on these, not InputSolution)
    inputs = [i.input() for i in input_solns.dataset.values()]

    # collect the data!