def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) opts.n_gpu = n_gpu LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format(device, n_gpu, hvd.rank(), opts.fp16)) if hvd.rank() != 0: LOGGER.disabled = True set_random_seed(opts.seed) # train_examples = None LOGGER.info(f"Loading the whole video dataset {opts.sub_txt_db}, " f"{opts.vfeat_db}") if opts.task != "didemo_video_only": video_db = load_video_sub_dataset(opts.vfeat_db, opts.sub_txt_db, opts.vfeat_interval, opts) else: txt_meta = load_json(join(opts.train_query_txt_db, "meta.json")) video_db = load_video_only_dataset(opts.vfeat_db, txt_meta, opts.vfeat_interval, opts) # data loaders # train video_ids = get_video_ids(opts.train_query_txt_db) train_q_txt_db = QueryTokLmdb(opts.train_query_txt_db, opts.max_txt_len) train_dataloaders = build_downstream_dataloaders([opts.task], video_db, video_ids, True, opts, shuffle=True, q_txt_db=train_q_txt_db) meta_loader = MetaLoader(train_dataloaders, accum_steps=opts.gradient_accumulation_steps, distributed=n_gpu > 1) meta_loader = PrefetchLoader(meta_loader) # val video_ids = get_video_ids(opts.val_query_txt_db) val_q_txt_db = QueryTokLmdb(opts.val_query_txt_db, -1) val_dataloaders = build_downstream_dataloaders([opts.task], video_db, video_ids, False, opts, q_txt_db=val_q_txt_db) if opts.task != "didemo_video_only": inf_dataset = VcmrFullEvalDataset else: inf_dataset = VcmrVideoOnlyFullEvalDataset LOGGER.info(f"Loading Inference Dataset {opts.val_query_txt_db} (val)") val_dset = inf_dataset(video_ids, video_db, val_q_txt_db, distributed=opts.distributed_eval) inf_loader_val = DataLoader(val_dset, batch_size=opts.vcmr_eval_q_batch_size, num_workers=opts.n_workers, pin_memory=opts.pin_mem, collate_fn=vcmr_full_eval_collate) inf_loader_val = PrefetchLoader(inf_loader_val) if opts.test_query_txt_db: LOGGER.info( f"Loading Inference Dataset {opts.test_query_txt_db} (test)") video_ids = get_video_ids(opts.test_query_txt_db) test_q_txt_db = QueryTokLmdb(opts.test_query_txt_db, -1) test_dset = inf_dataset(video_ids, video_db, test_q_txt_db, distributed=opts.distributed_eval) inf_loader_test = DataLoader(test_dset, batch_size=opts.vcmr_eval_q_batch_size, num_workers=opts.n_workers, pin_memory=opts.pin_mem, collate_fn=vcmr_full_eval_collate) inf_loader_test = PrefetchLoader(inf_loader_test) # Prepare model if opts.checkpoint: checkpoint = torch.load(opts.checkpoint) else: checkpoint = {} img_pos_embed_weight_key = "v_encoder.f_encoder.img_embeddings" +\ ".position_embeddings.weight" if img_pos_embed_weight_key in checkpoint: max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key]) else: max_frm_seq_len = MAX_FRM_SEQ_LEN model = HeroForVcmr.from_pretrained( opts.model_config, state_dict=checkpoint, vfeat_dim=VFEAT_DIM, max_frm_seq_len=max_frm_seq_len, lw_neg_ctx=opts.lw_neg_ctx, lw_neg_q=opts.lw_neg_q, lw_st_ed=0, ranking_loss_type=opts.ranking_loss_type, use_hard_negative=False, hard_pool_size=opts.hard_pool_size, margin=opts.margin, use_all_neg=opts.use_all_neg, drop_svmr_prob=opts.drop_svmr_prob) model.to(device) # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())} model, optimizer = amp.initialize(model, optimizer, num_losses=len(task2scaler), enabled=opts.fp16, opt_level='O2') restorer = TrainingRestorer(opts, model, optimizer) global_step = restorer.global_step TB_LOGGER.global_step = global_step if hvd.rank() == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(opts.output_dir, 'ckpt')) if not exists(join(opts.output_dir, 'results')): # store tvr predictions os.makedirs(join(opts.output_dir, 'results')) if opts.nms_thd != -1: # store tvr-nms predictions if not exists(join(opts.output_dir, 'results_nms')): os.makedirs(join(opts.output_dir, 'results_nms')) add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: pbar = NoOp() model_saver = NoOp() restorer = NoOp() if global_step > 0: pbar.update(global_step) LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) task2loss = { task: RunningMeter(f'loss/{task}') for task in train_dataloaders.keys() } for obj in (f'{opts.task}_st_ed', f'{opts.task}_neg_ctx', f'{opts.task}_neg_q'): task2loss[obj] = RunningMeter(f'loss/{obj}') model.train() n_examples = defaultdict(int) start = time() # quick hack for amp delay_unscale bug optimizer.zero_grad() if global_step == 0: optimizer.step() for step, (task, batch) in enumerate(meta_loader): if len(opts.hard_negtiave_start_step) > 0: for i, hn_step in enumerate(opts.hard_negtiave_start_step): if global_step >= hn_step and hn_step != -1: model.set_hard_negative(True, opts.hard_pool_size[i], opts.hard_neg_weights[i]) if opts.train_span_start_step != -1 and\ global_step >= opts.train_span_start_step: model.set_train_st_ed(opts.lw_st_ed) n_examples[task] += opts.train_batch_size loss = model(batch, task=task, compute_loss=True) loss_st_ed, loss_neg_ctx, loss_neg_q = loss loss = loss_st_ed + loss_neg_ctx + loss_neg_q for n, ls, w in (('st_ed', loss_st_ed, opts.lw_st_ed), ('neg_ctx', loss_neg_ctx, opts.lw_neg_ctx), ('neg_q', loss_neg_q, opts.lw_neg_q)): ls = ls.item() if w: ls /= w task2loss[f'{task}_{n}'](ls) loss = loss.mean() task2loss[task](loss.item()) delay_unscale = (step + 1) % opts.gradient_accumulation_steps != 0 with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale, loss_id=task2scaler[task]) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [ p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None ] all_reduce_and_rescale_tensors(grads, float(1)) if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step TB_LOGGER.add_scalar('lr', lr_this_step, global_step) # log loss TB_LOGGER.log_scaler_dict({ temp_loss.name: temp_loss.val for temp_loss in task2loss.values() if temp_loss.val is not None }) TB_LOGGER.step() # update model params if opts.grad_norm != -1: grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) optimizer.step() optimizer.zero_grad() pbar.update(1) if global_step % 100 == 0: # monitor training throughput LOGGER.info('-------------------------------------------') LOGGER.info(f'Step {global_step}:') for t in train_dataloaders.keys(): tot_ex = sum(all_gather_list(n_examples[t])) ex_per_sec = int(tot_ex / (time() - start)) LOGGER.info(f'{t}: {tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec, global_step) if global_step % opts.valid_steps == 0: LOGGER.info('===========================================') LOGGER.info(f"Step {global_step}: start running validation") validate(model, val_dataloaders, opts) if hvd.rank() == 0 or opts.distributed_eval: log, results = validate_full_vcmr(model, inf_loader_val, 'val', opts, model_opts=opts) save_json( results, f'{opts.output_dir}/results/' f'val_results_{global_step}_rank{hvd.rank()}.json') TB_LOGGER.log_scaler_dict(log) if opts.test_query_txt_db: log, results = validate_full_vcmr(model, inf_loader_test, 'test', opts, model_opts=opts) save_json( results, f'{opts.output_dir}/results/' f'test_results_{global_step}_rank{hvd.rank()}.json' ) TB_LOGGER.log_scaler_dict(log) LOGGER.info('===========================================') model_saver.save(model, global_step) # step restorer in the end to prevent missing validation checkpoint restorer.step() if global_step >= opts.num_train_steps: break LOGGER.info('===========================================') if global_step % opts.valid_steps != 0: if hvd.rank() == 0 or opts.distributed_eval: log, results = validate_full_vcmr(model, inf_loader_val, 'val', opts, model_opts=opts) save_json( results, f'{opts.output_dir}/results/' f'val_results_{global_step}' f'_rank{hvd.rank()}_final.json') TB_LOGGER.log_scaler_dict(log) if opts.test_query_txt_db: log, results = validate_full_vcmr(model, inf_loader_test, 'test', opts, model_opts=opts) save_json( results, f'{opts.output_dir}/results/' f'test_results_{global_step}_rank{hvd.rank()}.json') TB_LOGGER.log_scaler_dict(log) model_saver.save(model, f'{global_step}_final')
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() opts.rank = rank LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format( device, n_gpu, hvd.rank(), opts.fp16)) if opts.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, " "should be >= 1".format( opts.gradient_accumulation_steps)) set_random_seed(opts.seed) if rank == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(args.output_dir, 'ckpt')) add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: LOGGER.disabled = True pbar = NoOp() model_saver = NoOp() all_dbs = [db for datasets in [opts.train_datasets, opts.val_datasets] for dset in datasets for db in dset['db']] tokenizer = json.load(open(f'{all_dbs[0]}/meta.json'))['bert'] assert all(tokenizer == json.load(open(f'{db}/meta.json'))['bert'] for db in all_dbs) # build data loaders train_dataloaders, all_img_dbs = create_dataloaders( opts.train_datasets, True, opts) val_dataloaders, _ = create_dataloaders( opts.val_datasets, False, opts, all_img_dbs) meta_loader = MetaLoader(train_dataloaders, accum_steps=opts.gradient_accumulation_steps, distributed=n_gpu > 1) meta_loader = PrefetchLoader(meta_loader) # Prepare model if opts.checkpoint: checkpoint = torch.load(opts.checkpoint) else: checkpoint = {} model = UniterForPretraining.from_pretrained( opts.model_config, checkpoint, img_dim=IMG_DIM, img_label_dim=IMG_LABEL_DIM) model.to(device) model.train() # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())} model, optimizer = amp.initialize(model, optimizer, num_losses=len(task2scaler), enabled=opts.fp16, opt_level='O2') global_step = 0 LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) # to compute training statistics task2loss = {task: RunningMeter(f'loss/{task}') for task in train_dataloaders.keys()} # ITM w/ OT if opts.itm_ot_lambda > 0: for task in train_dataloaders.keys(): if task.startswith('itm'): task2loss[f'{task}_xe'] = RunningMeter(f'loss/{task}_xe') task2loss[f'{task}_ot'] = RunningMeter(f'loss/{task}_ot') task2loss[f'{task}_ot_pos'] = RunningMeter( f'loss/{task}_ot_pos') task2loss[f'{task}_ot_neg'] = RunningMeter( f'loss/{task}_ot_neg') n_examples = defaultdict(int) n_in_units = defaultdict(int) n_loss_units = defaultdict(int) grad_norm = 0 start = time() # quick hack for amp delay_unscale bug optimizer.zero_grad() optimizer.step() for step, (name, batch) in enumerate(meta_loader): # forward pass n_examples[name] += batch['input_ids'].size(0) n_in_units[name] += (batch['attn_masks'] == 1).sum().item() task = name.split('_')[0] loss = model(batch, task=task, compute_loss=True) if task.startswith('itm'): # OT itm_loss, ot_loss = loss n_loss_units[name] += itm_loss.size(0) itm_loss = itm_loss.mean() if ot_loss is not None: ot_pos, ot_neg = ot_loss ot_loss = (ot_pos.sum() - ot_neg.sum() ) / (ot_pos.size(0) + ot_neg.size(0)) # NOTE: be ware of empty tensor ot_pos = ot_pos.mean().item() if not math.isnan(ot_pos): task2loss[f'{name}_ot_pos'](ot_pos) ot_neg = ot_neg.mean().item() if not math.isnan(ot_neg): task2loss[f'{name}_ot_neg'](ot_neg) loss = itm_loss + opts.itm_ot_lambda * ot_loss task2loss[f'{name}_xe'](itm_loss.item()) task2loss[f'{name}_ot'](ot_loss.item()) else: loss = itm_loss else: n_loss_units[name] += loss.size(0) loss = loss.mean() # loss is not normalized in model # backward pass delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0 with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale, loss_id=task2scaler[name]) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None] all_reduce_and_rescale_tensors(grads, float(1)) task2loss[name](loss.item()) # optimizer update and logging if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step TB_LOGGER.add_scalar('lr', lr_this_step, global_step) # log loss # NOTE: not gathered across GPUs for efficiency TB_LOGGER.log_scaler_dict({ll.name: ll.val for ll in task2loss.values() if ll.val is not None}) TB_LOGGER.step() # update model params if opts.grad_norm != -1: grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) optimizer.step() optimizer.zero_grad() pbar.update(1) if global_step % 100 == 0: # monitor training throughput LOGGER.info(f'==============Step {global_step}===============') for t in train_dataloaders.keys(): assert all(tt == t for tt in all_gather_list(t)) tot_ex = sum(all_gather_list(n_examples[t])) ex_per_sec = int(tot_ex / (time()-start)) tot_in = sum(all_gather_list(n_in_units[t])) in_per_sec = int(tot_in / (time()-start)) tot_l = sum(all_gather_list(n_loss_units[t])) l_per_sec = int(tot_l / (time()-start)) LOGGER.info(f'{t}: {tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec, global_step) TB_LOGGER.add_scalar(f'perf/{t}_in_per_s', in_per_sec, global_step) TB_LOGGER.add_scalar(f'perf/{t}_loss_per_s', l_per_sec, global_step) LOGGER.info('===============================================') if global_step % opts.valid_steps == 0: LOGGER.info(f'Step {global_step}: start validation') validate(model, val_dataloaders) model_saver.save(model, global_step) if global_step >= opts.num_train_steps: break if global_step % opts.valid_steps != 0: LOGGER.info(f'Step {global_step}: start validation') validate(model, val_dataloaders) model_saver.save(model, global_step)
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) opts.n_gpu = n_gpu LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format(device, n_gpu, hvd.rank(), opts.fp16)) if hvd.rank() != 0: LOGGER.disabled = True set_random_seed(opts.seed) # data loaders train_dataloaders = {} val_dataloaders = {} for target, t_r in zip(opts.targets, opts.targets_ratio): train_loaders, val_loaders = build_target_loaders( target, t_r, opts) # -> choose which task and get corrsponding task dataloder train_dataloaders.update(train_loaders) val_dataloaders.update(val_loaders) meta_loader = MetaLoader(train_dataloaders, accum_steps=opts.gradient_accumulation_steps, distributed=n_gpu > 1) meta_loader = PrefetchLoader(meta_loader) # Prepare model if opts.checkpoint: checkpoint = torch.load(opts.checkpoint) else: checkpoint = {} img_pos_embed_weight_key = "v_encoder.f_encoder.img_embeddings" +\ ".position_embeddings.weight" if img_pos_embed_weight_key in checkpoint: max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key]) else: max_frm_seq_len = MAX_FRM_SEQ_LEN if opts.load_partial_pretrained: # from roberta model = HeroForPretraining(VideoModelConfig(opts.model_config), vfeat_dim=VFEAT_DIM, max_frm_seq_len=max_frm_seq_len, lw_neg_ctx=opts.lw_neg_ctx, lw_neg_q=opts.lw_neg_q, lw_st_ed=0, ranking_loss_type=opts.ranking_loss_type, use_hard_negative=False, hard_pool_size=opts.hard_pool_size, margin=opts.margin, use_all_neg=opts.use_all_neg, drop_svmr_prob=opts.drop_svmr_prob) model.load_partial_pretrained(checkpoint, VFEAT_DIM, max_frm_seq_len, skip_layers=opts.skip_layer_loading) else: # continue training model = HeroForPretraining.from_pretrained( opts.model_config, state_dict=checkpoint, vfeat_dim=VFEAT_DIM, max_frm_seq_len=max_frm_seq_len, lw_neg_ctx=opts.lw_neg_ctx, lw_neg_q=opts.lw_neg_q, lw_st_ed=0, ranking_loss_type=opts.ranking_loss_type, use_hard_negative=False, hard_pool_size=opts.hard_pool_size, margin=opts.margin, use_all_neg=opts.use_all_neg, drop_svmr_prob=opts.drop_svmr_prob) model.to(device) # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())} model, optimizer = amp.initialize(model, optimizer, num_losses=len(task2scaler), enabled=opts.fp16, opt_level='O2') restorer = TrainingRestorer(opts, model, optimizer) all_gather_list(None) # sync to prevent slower rank to read training meta global_step = restorer.global_step TB_LOGGER.global_step = global_step if hvd.rank() == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(opts.output_dir, 'ckpt')) add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: pbar = NoOp() model_saver = NoOp() restorer = NoOp() if global_step > 0: pbar.update(global_step) LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) task2loss = { task: RunningMeter(f'loss/{task}') for task in train_dataloaders.keys() } for task in train_dataloaders.keys(): if task.startswith('vsm'): for obj in ('st_ed', 'neg_ctx', 'neg_q'): task2loss[f"{task}_{obj}"] = RunningMeter(f'loss/{task}_{obj}') model.train() n_examples = defaultdict(int) start = time() # quick hack for amp delay_unscale bug optimizer.zero_grad() if global_step == 0: optimizer.step() assert all(global_step == s for s in all_gather_list(global_step)) for step, (task, batch) in enumerate(meta_loader): LOGGER.debug(f"Task: {task}") # hard negative in VSM if len(opts.hard_negtiave_start_step) > 0: for i, hn_step in enumerate(opts.hard_negtiave_start_step): if global_step >= hn_step and hn_step != -1: model.set_hard_negative(True, opts.hard_pool_size[i], opts.hard_neg_weights[i]) # start-end loss if opts.train_span_start_step != -1 and\ global_step >= opts.train_span_start_step: model.set_train_st_ed(opts.lw_st_ed) train_task = task.split('_')[0] n_examples[task] += opts.train_batch_size loss = model(batch, task=train_task, compute_loss=True) if train_task == 'vsm': loss_st_ed, loss_neg_ctx, loss_neg_q = loss loss = loss_st_ed + loss_neg_ctx + loss_neg_q for n, ls, w in (('st_ed', loss_st_ed, opts.lw_st_ed), ('neg_ctx', loss_neg_ctx, opts.lw_neg_ctx), ('neg_q', loss_neg_q, opts.lw_neg_q)): ls = ls.item() if w: ls /= w task2loss[f'{task}_{n}'](ls) elif train_task == "mffr": loss = torch.sqrt(loss.sum(dim=1)) loss = loss.mean() task2loss[task](loss.item()) delay_unscale = (step + 1) % opts.gradient_accumulation_steps != 0 with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale, loss_id=task2scaler[task]) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [ p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None ] LOGGER.debug("before reduce grad") all_reduce_and_rescale_tensors(grads, float(1)) LOGGER.debug("after reduce grad") if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step TB_LOGGER.add_scalar('lr', lr_this_step, global_step) # log loss # NOTE: only consider rank 0 for speed TB_LOGGER.log_scaler_dict({ ll.name: ll.val for ll in task2loss.values() if ll.val is not None }) TB_LOGGER.step() LOGGER.debug("before norm grad") # update model params if opts.grad_norm != -1: grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) LOGGER.debug("after norm grad") LOGGER.debug("before optim step") optimizer.step() optimizer.zero_grad() pbar.update(1) LOGGER.debug("after optim step") if global_step % 100 == 0: LOGGER.debug("after gather stats") # monitor training throughput LOGGER.info('-------------------------------------------') LOGGER.info(f'Step {global_step}:') for t in train_dataloaders.keys(): tot_ex = sum(all_gather_list(n_examples[t])) ex_per_sec = int(tot_ex / (time() - start)) LOGGER.info(f'{t}: {tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec, global_step) LOGGER.debug("after gather stats") if global_step % opts.valid_steps == 0: LOGGER.info('===========================================') LOGGER.info(f"Step {global_step}: start running validation") validate(model, val_dataloaders, opts) LOGGER.info('===========================================') model_saver.save(model, global_step) # step restorer in the end to prevent missing validation checkpoint restorer.step() if global_step >= opts.num_train_steps: break LOGGER.info('===========================================') if global_step % opts.valid_steps != 0: LOGGER.info('===========================================') LOGGER.info(f"Step {global_step}: start running validation") validate(model, val_dataloaders, opts) LOGGER.info('===========================================') model_saver.save(model, global_step)
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) opts.n_gpu = n_gpu LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format(device, n_gpu, hvd.rank(), opts.fp16)) if hvd.rank() != 0: LOGGER.disabled = True set_random_seed(opts.seed) # train_examples = None LOGGER.info(f"Loading the whole video dataset {opts.sub_txt_db}, " f"{opts.vfeat_db}") video_db = load_video_sub_dataset(opts.vfeat_db, opts.sub_txt_db, opts.vfeat_interval, opts) # data loaders # train LOGGER.info(f"Loading the train QA dataset {opts.train_query_txt_db}") video_ids = get_video_ids(opts.train_query_txt_db) train_q_txt_db = QaQueryTokLmdb(opts.train_query_txt_db, opts.max_txt_len) train_dataloaders = build_downstream_dataloaders([opts.task], video_db, video_ids, True, opts, q_txt_db=train_q_txt_db, shuffle=True) meta_loader = MetaLoader(train_dataloaders, accum_steps=opts.gradient_accumulation_steps, distributed=n_gpu > 1) meta_loader = PrefetchLoader(meta_loader) # val LOGGER.info(f"Loading the val QA dataset {opts.val_query_txt_db}") video_ids = get_video_ids(opts.val_query_txt_db) val_q_txt_db = QaQueryTokLmdb(opts.val_query_txt_db, -1) val_dataloaders = build_downstream_dataloaders([opts.task], video_db, video_ids, False, opts, q_txt_db=val_q_txt_db) if opts.test_query_txt_db: LOGGER.info(f"Loading the test QA dataset {opts.test_query_txt_db}") video_ids = get_video_ids(opts.test_query_txt_db) test_q_txt_db = QaQueryTokLmdb(opts.test_query_txt_db, -1) test_dataloaders = build_downstream_dataloaders([opts.task], video_db, video_ids, False, opts, q_txt_db=test_q_txt_db) # Prepare model if opts.checkpoint: checkpoint = torch.load(opts.checkpoint) else: checkpoint = {} img_pos_embed_weight_key = "v_encoder.f_encoder.img_embeddings" +\ ".position_embeddings.weight" if img_pos_embed_weight_key in checkpoint: max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key]) else: max_frm_seq_len = MAX_FRM_SEQ_LEN model = HeroForVideoQA.from_pretrained(opts.model_config, state_dict=checkpoint, vfeat_dim=VFEAT_DIM, max_frm_seq_len=max_frm_seq_len) model.to(device) # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())} model, optimizer = amp.initialize(model, optimizer, num_losses=len(task2scaler), enabled=opts.fp16, opt_level='O2') restorer = TrainingRestorer(opts, model, optimizer) global_step = restorer.global_step TB_LOGGER.global_step = global_step if hvd.rank() == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(opts.output_dir, 'ckpt')) if not exists(join(opts.output_dir, 'results')): # store tvqa predictions os.makedirs(join(opts.output_dir, 'results')) add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: LOGGER.disabled = True pbar = NoOp() model_saver = NoOp() restorer = NoOp() if global_step > 0: pbar.update(global_step) LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) task2loss = { task: RunningMeter(f'loss/{task}') for task in train_dataloaders.keys() } for obj in (f'{opts.task}_qa', f'{opts.task}_st_ed'): task2loss[obj] = RunningMeter(f'loss/{obj}') model.train() n_examples = defaultdict(int) start = time() # quick hack for amp delay_unscale bug optimizer.zero_grad() if global_step == 0: optimizer.step() for step, (task, batch) in enumerate(meta_loader): n_examples[task] += opts.train_batch_size loss = model(batch, task=task, compute_loss=True) loss_qa, loss_st_ed = loss loss = loss_qa + opts.lw_st_ed * loss_st_ed for n, ls in (('st_ed', loss_st_ed), ('qa', loss_qa)): ls = ls.item() task2loss[f'{task}_{n}'](ls) loss = loss.mean() task2loss[task](loss.item()) delay_unscale = (step + 1) % opts.gradient_accumulation_steps != 0 with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale, loss_id=task2scaler[task]) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [ p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None ] all_reduce_and_rescale_tensors(grads, float(1)) if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for i, param_group in enumerate(optimizer.param_groups): if i == 0 or i == 1: param_group['lr'] = lr_this_step * opts.lr_mul elif i == 2 or i == 3: param_group['lr'] = lr_this_step else: raise ValueError() TB_LOGGER.add_scalar('lr', lr_this_step, global_step) TB_LOGGER.log_scaler_dict({ temp_loss.name: temp_loss.val for temp_loss in task2loss.values() if temp_loss.val is not None }) TB_LOGGER.step() # update model params if opts.grad_norm != -1: grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) optimizer.step() optimizer.zero_grad() restorer.step() pbar.update(1) if global_step % 100 == 0: # monitor training throughput LOGGER.info('-------------------------------------------') LOGGER.info(f'Step {global_step}:') for t in train_dataloaders.keys(): tot_ex = sum(all_gather_list(n_examples[t])) ex_per_sec = int(tot_ex / (time() - start)) LOGGER.info(f'{t}: {tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec, global_step) if global_step % opts.valid_steps == 0: LOGGER.info('===========================================') LOGGER.info(f"Step {global_step}: start running validation") validate(model, val_dataloaders, "val", opts, global_step=global_step) if opts.test_query_txt_db: validate(model, test_dataloaders, "test", opts, global_step=global_step) LOGGER.info('===========================================') model_saver.save(model, global_step) if global_step >= opts.num_train_steps: break LOGGER.info('===========================================') if global_step % opts.valid_steps != 0: LOGGER.info('===========================================') LOGGER.info(f"Step {global_step}: start running validation") validate(model, val_dataloaders, "val", opts, global_step=global_step) if opts.test_query_txt_db: validate(model, test_dataloaders, "test", opts, global_step=global_step) LOGGER.info('===========================================') model_saver.save(model, f'{global_step}_final')
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() opts.rank = rank LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format( device, n_gpu, hvd.rank(), opts.fp16)) if opts.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, " "should be >= 1".format( opts.gradient_accumulation_steps)) set_random_seed(opts.seed) if rank == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(opts.output_dir, 'ckpt')) add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: LOGGER.disabled = True pbar = NoOp() model_saver = NoOp() all_dbs = [db for datasets in [opts.train_datasets, opts.val_datasets] for dset in datasets for db in dset['db']] tokenizer = json.load(open(f'{all_dbs[0]}/meta.json'))['bert'] #print(tokenizer) # assert all(tokenizer == json.load(open(f'{db}/meta.json'))['bert'] # for db in all_dbs) # build data loaders train_dataloaders, all_img_dbs = create_dataloaders( opts.train_datasets, True, opts) val_dataloaders, _ = create_dataloaders( opts.val_datasets, False, opts, all_img_dbs) meta_loader = MetaLoader(train_dataloaders, accum_steps=opts.gradient_accumulation_steps, distributed=n_gpu > 1) meta_loader = PrefetchLoader(meta_loader) # Prepare model if opts.checkpoint: checkpoint = torch.load(opts.checkpoint) else: checkpoint = {} if opts.rename_checkpoints: rename_checkpoint(checkpoint) #Include early_adaptation if opts.early_adaptation: early_adaptation_checkpoint = torch.load(opts.early_adaptation_checkpoint) checkpoint['roberta.img_embeddings.img_linear.weight'] = early_adaptation_checkpoint['v2w_linear.weight'] checkpoint['roberta.img_embeddings.img_linear.bias'] = early_adaptation_checkpoint['v2w_linear.bias'] model = VLXLMRForPretraining.from_pretrained( opts.model_config, checkpoint, img_dim=IMG_DIM, img_label_dim=IMG_LABEL_DIM, nce_temp=opts.nce_temp, ot_pos_only=opts.ot_pos_only) # model = UniterForPretraining.from_pretrained( # opts.model_config, checkpoint, # img_dim=IMG_DIM, img_label_dim=IMG_LABEL_DIM, # nce_temp=opts.nce_temp, ot_pos_only=opts.ot_pos_only) model.pad_vocab() # tensor core padding for vocabulary model.to(device) model.train() # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())} model, optimizer = amp.initialize(model, optimizer, num_losses=len(task2scaler), enabled=opts.fp16, opt_level='O2') #global_step = 0 #Initialize the TrainingRestorer restorer = TrainingRestorer(opts, model, optimizer) global_step = restorer.global_step TB_LOGGER._global_step = global_step if hvd.rank() !=0: restorer = NoOp() #Added for Restoring the Checkpoints if global_step > 0: pbar.update(global_step) LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) # to compute training statistics task2loss = {task: RunningMeter(f'loss/{task}') for task in train_dataloaders.keys()} # ITM w/ OT if opts.itm_ot_lambda > 0: for task in train_dataloaders.keys(): if task.startswith('itm'): task2loss[f'{task}_xe'] = RunningMeter(f'loss/{task}_xe') task2loss[f'{task}_ot'] = RunningMeter(f'loss/{task}_ot') if not opts.ot_pos_only: task2loss[f'{task}_ot_pos'] = RunningMeter( f'loss/{task}_ot_pos') task2loss[f'{task}_ot_neg'] = RunningMeter( f'loss/{task}_ot_neg') n_examples = defaultdict(int) n_in_units = defaultdict(int) n_loss_units = defaultdict(int) n_neg_nce = defaultdict(int) grad_norm = 0 start = time() #Added by Mingyang to debug the training procedure # debug_start = torch.cuda.Event(enable_timing=True) # debug_end = torch.cuda.Event(enable_timing=True) # quick hack for amp delay_unscale bug optimizer.zero_grad() optimizer.step() #Added by Mingyang Zhou # debug_start.record() for step, (name, batch) in enumerate(meta_loader): # forward pass assert all(name == n for n in all_gather_list(name)) n_examples[name] += batch['input_ids'].size(0) n_in_units[name] += (batch['attn_masks'] == 1).sum().item() if 'nce' in name: n_neg_nce[name] += batch['neg_feats'].size(0) task = name.split('_')[0] loss = model(batch, task=task, compute_loss=True) if task.startswith('itm'): # OT itm_loss, ot_loss = loss n_loss_units[name] += itm_loss.size(0) itm_loss = itm_loss.mean() if ot_loss is not None: if not opts.ot_pos_only: ot_pos, ot_neg = ot_loss ot_loss = (ot_pos.sum() - ot_neg.sum() ) / (ot_pos.size(0) + ot_neg.size(0)) # NOTE: be ware of empty tensor ot_pos = ot_pos.mean().item() if not math.isnan(ot_pos): task2loss[f'{name}_ot_pos'](ot_pos) ot_neg = ot_neg.mean().item() if not math.isnan(ot_neg): task2loss[f'{name}_ot_neg'](ot_neg) else: ot_loss = ot_loss.mean() loss = itm_loss + opts.itm_ot_lambda * ot_loss task2loss[f'{name}_xe'](itm_loss.item()) task2loss[f'{name}_ot'](ot_loss.item()) else: loss = itm_loss elif task.startswith('vmlm-soft'): loss = 1000*loss.mean() else: n_loss_units[name] += loss.size(0) loss = loss.mean() # loss is not normalized in model # backward pass delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0 with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale, loss_id=task2scaler[name]) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None] all_reduce_and_rescale_tensors(grads, float(1)) task2loss[name](loss.item()) # optimizer update and logging if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step TB_LOGGER.add_scalar('lr', lr_this_step, global_step) # log loss # for t, l in task2loss.items(): # loss = sum(v for v in all_gather_list(l.val) # if v is not None) / hvd.size() # task2loss[t] = RunningMeter(f'loss/{t}', loss) TB_LOGGER.log_scaler_dict({l.name: l.val for l in task2loss.values() if l.val is not None}) TB_LOGGER.step() # update model params if opts.grad_norm != -1: ''' if global_step % 10 == 0 and not opts.fp16: bias = model.bert.img_embeddings.img_linear.bias weight = model.bert.img_embeddings.img_linear.weight print(f"bnorm: {bias.norm()}") print(f"wnorm: {weight.norm()}") print(f"bgnorm: {bias.grad.norm()}") print(f"wgnorm: {weight.grad.norm()}") mask = model.bert.img_embeddings.mask_embedding.weight print(f"mnorm: {mask.norm()}") print(f"mgnorm: {mask.grad.norm()}") print([(n, p.grad.norm().item()) for n, p in model.named_parameters() if p.grad is not None and p.grad.norm().item() > grad_norm/10]) ''' grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) optimizer.step() optimizer.zero_grad() pbar.update(1) if global_step % 100 == 0: # monitor training throughput LOGGER.info(f'==============Step {global_step}===============') for t in train_dataloaders.keys(): assert all(tt == t for tt in all_gather_list(t)) tot_ex = sum(all_gather_list(n_examples[t])) ex_per_sec = int(tot_ex / (time()-start)) tot_in = sum(all_gather_list(n_in_units[t])) in_per_sec = int(tot_in / (time()-start)) tot_l = sum(all_gather_list(n_loss_units[t])) l_per_sec = int(tot_l / (time()-start)) LOGGER.info(f'{t}: {tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec, global_step) TB_LOGGER.add_scalar(f'perf/{t}_in_per_s', in_per_sec, global_step) TB_LOGGER.add_scalar(f'perf/{t}_loss_per_s', l_per_sec, global_step) if 'nce' in t: avg_neg = sum(all_gather_list(n_neg_nce[t]) ) / hvd.size() // step LOGGER.info(f'{t}: averaging ' f'{avg_neg} negative samples') LOGGER.info(f'===============================================') if global_step % opts.valid_steps == 0: LOGGER.info(f'Step {global_step}: start validation') validate(model, val_dataloaders) #os.makedir('/'.join([opts.output_dir, "ckpt") model_saver.save(model, global_step, optimizer) restorer.step() if global_step >= opts.num_train_steps: break if global_step % opts.valid_steps != 0: LOGGER.info(f'Step {global_step}: start validation') validate(model, val_dataloaders) model_saver.save(model, global_step)