logits = tf.layers.dense(hidden_layer_1, 10) # label placeholder label_placeholder = tf.placeholder(tf.uint8, shape=[None]) label_one_hot = tf.one_hot(label_placeholder, 10) # loss function loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=label_one_hot, logits=logits)) # DONE choose better backpropagation # backpropagation algorithm train = tf.train.AdamOptimizer().minimize(loss) accuracy = dataUtils.accuracy(logits, label_one_hot) # summaries tf.summary.scalar('accuracy', accuracy) tf.summary.scalar('loss', loss) tf.summary.tensor_summary("logits", logits) tf.summary.tensor_summary("labels", label_one_hot) summary_tensor = tf.summary.merge_all() saver = tf.train.Saver() # Make tensorflow session with tf.Session() as sess: training_summary_writer = tf.summary.FileWriter( TENSORBOARD_LOGDIR + "/training", sess.graph)
# Logit layer logits = tf.nn.softmax(tf.layers.dense( hidden_layer_2, 2, activation=None)) # replace with your code # label placeholder label_placeholder = tf.placeholder(tf.float32, shape=[None, 2]) # replace with your code # loss function loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=label_placeholder, logits=logits)) # backpropagation algorithm train = tf.train.AdamOptimizer().minimize(loss) # replace with your code accuracy = dataUtils.accuracy(logits, label_placeholder) # summaries tf.summary.scalar('accuracy', accuracy) tf.summary.scalar('loss', loss) merged = tf.summary.merge_all() # Add ops to save and restore all the variables. saver = tf.train.Saver() # Make tensorflow session with tf.Session() as sess: train_writer = tf.summary.FileWriter("summary/project1", sess.graph) # Initialize variables sess.run(tf.global_variables_initializer())