Exemplo n.º 1
0
def heatbudg_2d_pd_fn(run_fol, years, trange, heatbudg=True, humbudg=False):
    year = years[0]
    rundata = load_year_xr(run_fol, year, pinterp=True)
    rundata.coords['pentad'] = (rundata.time // 5) - 71
    mngrp = rundata.ucomp.groupby('pentad').mean(('time'))
    trl = trange[1] - trange[0]
    #Define constants
    omega = 7.2921150e-5
    a = 6376.0e3  #radius used in model
    coslat = np.cos(rundata.lat * np.pi / 180)

    #Initialise arrays to load into
    u = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                     [('pentad', range(trange[0] + 1, trange[1] + 1)),
                      ('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    v = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                     [('pentad', range(trange[0] + 1, trange[1] + 1)),
                      ('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    w = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                     [('pentad', range(trange[0] + 1, trange[1] + 1)),
                      ('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    if heatbudg == True:
        t = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                         [('pentad', range(trange[0] + 1, trange[1] + 1)),
                          ('pfull', rundata.pfull), ('lat', rundata.lat),
                          ('lon', rundata.lon), ('year', years)])
    if humbudg == True:
        q = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                         [('pentad', range(trange[0] + 1, trange[1] + 1)),
                          ('pfull', rundata.pfull), ('lat', rundata.lat),
                          ('lon', rundata.lon), ('year', years)])
    if heatbudg == False and humbudg == False:
        print 'No budget specified'
        return

    for year in years:
        print year
        rundata = load_year_xr(run_fol, year, pinterp=True)
        rundata.coords['pentad'] = (rundata.time // 5) - 71
        u[:, :, :, :, year - years[0]] = rundata.ucomp.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], :, :, :]
        v[:, :, :, :, year - years[0]] = rundata.vcomp.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], :, :, :]
        w[:, :, :, :, year - years[0]] = rundata.omega.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], :, :, :]
        if heatbudg == True:
            t[:, :, :, :,
              year - years[0]] = rundata.temp.groupby('pentad').mean(
                  ('time'))[trange[0]:trange[1], :, :, :]
        if humbudg == True:
            q[:, :, :, :,
              year - years[0]] = rundata.sphum.groupby('pentad').mean(
                  ('time'))[trange[0]:trange[1], :, :, :]

    #Take averages: u, v, uv, w, phi, damping terms
    u_av = u.mean(('year'))
    v_av = v.mean(('year'))
    w_av = w.mean(('year'))

    #Evaluate eddy quantities
    u_ed = u - u_av
    v_ed = v - v_av
    w_ed = w - w_av

    if heatbudg == True:
        t_av = t.mean(('year'))
        t_ed = t - t_av
        ut_ed = (u_ed * t_ed).mean(('year'))
        vt_ed = (v_ed * t_ed).mean(('year')) * coslat
        wt_ed = (w_ed * t_ed).mean(('year'))

        #Evaluate gradients needed
        dtdx_av = xr.DataArray(
            cfd(t_av.values, t_av.lon * np.pi / 180, 3),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        udtdx_av = u_av * dtdx_av / coslat / a
        dtdy_av = xr.DataArray(
            cfd(t_av.values, t_av.lat * np.pi / 180, 2),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        vdtdy_av = v_av * dtdy_av / a
        dtdp_av = xr.DataArray(
            cfd(t_av.values, t_av.pfull * 100, 1),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        wdtdp_av = w_av * dtdp_av

        duteddx_av = xr.DataArray(
            cfd(ut_ed.values, ut_ed.lon * np.pi / 180, 3),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        duteddx_av = duteddx_av / coslat / a
        dvteddy_av = xr.DataArray(
            cfd(vt_ed.values, vt_ed.lat * np.pi / 180, 2),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        dvteddy_av = dvteddy_av / coslat / a
        dwteddp_av = xr.DataArray(
            cfd(wt_ed.values, wt_ed.pfull * 100, 1),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])

        #evaluate sums of the terms
        heat_eddy = -(duteddx_av + dvteddy_av + dwteddp_av)
        heat_mean = -(udtdx_av + vdtdy_av + wdtdp_av)
        heat_sum = heat_eddy + heat_mean

    if humbudg == True:
        q_av = q.mean(('year'))
        q_ed = q - q_av
        uq_ed = (u_ed * q_ed).mean(('year'))
        vq_ed = (v_ed * q_ed).mean(('year')) * coslat
        wq_ed = (w_ed * q_ed).mean(('year'))

        #Evaluate gradients needed
        dqdx_av = xr.DataArray(
            cfd(q_av.values, q_av.lon * np.pi / 180, 3),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        udqdx_av = u_av * dqdx_av / coslat / a
        dqdy_av = xr.DataArray(
            cfd(q_av.values, q_av.lat * np.pi / 180, 2),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        vdqdy_av = v_av * dqdy_av / a
        dqdp_av = xr.DataArray(
            cfd(q_av.values, q_av.pfull * 100, 1),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        wdqdp_av = w_av * dqdp_av

        duqeddx_av = xr.DataArray(
            cfd(uq_ed.values, uq_ed.lon * np.pi / 180, 3),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        duqeddx_av = duqeddx_av / coslat / a
        dvqeddy_av = xr.DataArray(
            cfd(vq_ed.values, vq_ed.lat * np.pi / 180, 2),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
        dvqeddy_av = dvqeddy_av / coslat / a
        dwqeddp_av = xr.DataArray(
            cfd(wq_ed.values, wq_ed.pfull * 100, 1),
            [('pentad', range(trange[0] + 1, trange[1] + 1)),
             ('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])

        #evaluate sums of the terms
        hum_eddy = -(duqeddx_av + dvqeddy_av + dwqeddp_av)
        hum_mean = -(udqdx_av + vdqdy_av + wdqdp_av)
        hum_sum = hum_eddy + hum_mean

    if heatbudg == True and humbudg == True:
        data_out = xr.Dataset({
            'hum_eddy': hum_eddy,
            'hum_mean': hum_mean,
            'hum_sum': hum_sum,
            'heat_eddy': heat_eddy,
            'heat_mean': heat_mean,
            'heat_sum': heat_sum,
            'u_av': u_av,
            'v_av': v_av
        })
    elif heatbudg == True:
        data_out = xr.Dataset({
            'heat_eddy': heat_eddy,
            'heat_mean': heat_mean,
            'heat_sum': heat_sum,
            'u_av': u_av,
            'v_av': v_av
        })

    elif humbudg == True:
        data_out = xr.Dataset({
            'hum_eddy': hum_eddy,
            'hum_mean': hum_mean,
            'hum_sum': hum_sum,
            'u_av': u_av,
            'v_av': v_av
        })

    return data_out
Exemplo n.º 2
0
def mom_adv_terms_fn(run_fol,years, trange):
    year = years[0]
    rundata = load_year_xr(run_fol, year, pinterp=True)
    rundata.coords['pentad'] = (rundata.time // 5) - 71
    mngrp = rundata.ucomp.groupby('pentad').mean(('time'))
    trl = trange[1]-trange[0]
    #Define constants
    omega = 7.2921150e-5
    a= 6376.0e3 #radius used in model
    coslat = np.cos(rundata.lat * np.pi/180)
    f = 2 * omega * np.sin(rundata.lat *np.pi/180)

    #Initialise arrays to load into
    u =     xr.DataArray(np.zeros((trl,17,64,128,len(years))), [('pentad', range(trange[0]+1,trange[1]+1) ), ('pfull', rundata.pfull), ('lat', rundata.lat), ('lon', rundata.lon), ('year', years )])
    v =     xr.DataArray(np.zeros((trl,64,128,len(years))), [('pentad', range(trange[0]+1,trange[1]+1) ), ('lat', rundata.lat), ('lon', rundata.lon), ('year', years )])
    w =     xr.DataArray(np.zeros((trl,17,64,128,len(years))), [('pentad', range(trange[0]+1,trange[1]+1) ), ('pfull', rundata.pfull), ('lat', rundata.lat), ('lon', rundata.lon), ('year', years )])
    uu =    xr.DataArray(np.zeros((trl,64,128,len(years))), [('pentad', range(trange[0]+1,trange[1]+1) ), ('lat', rundata.lat),  ('lon', rundata.lon), ('year', years )])
    uv =    xr.DataArray(np.zeros((trl,64,128,len(years))), [('pentad', range(trange[0]+1,trange[1]+1) ), ('lat', rundata.lat), ('lon', rundata.lon), ('year', years )])
    uw =    xr.DataArray(np.zeros((trl,17,64,128,len(years))), [('pentad', range(trange[0]+1,trange[1]+1) ), ('pfull', rundata.pfull), ('lat', rundata.lat),  ('lon', rundata.lon), ('year', years )])

    for year in years:
        print year
        rundata = load_year_xr(run_fol, year, pinterp=True)
        rundata.coords['pentad'] = (rundata.time // 5) - 71
        u[:,:,:,:,year-years[0]]     = rundata.ucomp.groupby('pentad').mean(('time'))[trange[0]:trange[1],:,:,:]
        v[:,:,:,year-years[0]]     = rundata.vcomp.groupby('pentad').mean(('time'))[trange[0]:trange[1],9,:,:]
        w[:,:,:,:,year-years[0]]     = rundata.omega.groupby('pentad').mean(('time'))[trange[0]:trange[1],:,:,:]
        uu[:,:,:,year-years[0]]    = rundata.ucomp_sq.groupby('pentad').mean(('time'))[trange[0]:trange[1],9,:,:]
        uv[:,:,:,year-years[0]]    = rundata.ucomp_vcomp.groupby('pentad').mean(('time'))[trange[0]:trange[1],9,:,:]
        uw[:,:,:,:,year-years[0]]    = rundata.ucomp_omega.groupby('pentad').mean(('time'))[trange[0]:trange[1],:,:,:]

    #Take averages: u, v, uv, w, phi, damping terms
    u_av = u.mean(('year'))
    v_av = v.mean(('year'))
    w_av = w.mean(('year'))
    uu_av = uu.mean(('year'))
    uv_av = uv.mean(('year'))
    uw_av = uw.mean(('year'))

    #Evaluate mean eddy products
    uued_av  =  uu_av - u_av[:,9,:,:]*u_av[:,9,:,:]
    uved_av  = (uv_av - u_av[:,9,:,:]*v_av)*coslat*coslat
    uwed_av  =  uw_av - u_av*w_av
    
    #Evaluate gradients needed        
    dudx_av = xr.DataArray( cfd(u_av[:,9,:,:].values,u_av.lon*np.pi/180,2),   [('pentad', range(trange[0]+1,trange[1]+1) ), ('lat', u_av.lat), ('lon', u_av.lon )])
    ududx_av = u_av[:,9,:,:]*dudx_av/coslat/a
    
    dudy_av = xr.DataArray( cfd((u_av[:,9,:,:]*coslat).values,u_av.lat*np.pi/180,1),   [('pentad', range(trange[0]+1,trange[1]+1)  ), ('lat', u_av.lat), ('lon', u_av.lon )])
    vdudy_av = v_av*dudy_av/coslat/a
    
    dudp_av = xr.DataArray( cfd(u_av.values,u_av.pfull*100,1), [('pentad', range(trange[0]+1,trange[1]+1)  ), ('pfull', u_av.pfull ), ('lat', u_av.lat), ('lon', u_av.lon )])
    wdudp_av = w_av[:,9,:,:]*dudp_av[:,9,:,:]

    duueddx_av = xr.DataArray( cfd(uued_av.values,uued_av.lon*np.pi/180,2),   [('pentad', range(trange[0]+1,trange[1]+1)  ), ('lat', u_av.lat),  ('lon', uued_av.lon )])
    duueddx_av = duueddx_av/coslat/a
    duveddy_av = xr.DataArray( cfd(uved_av.values ,uved_av.lat*np.pi/180,1),   [('pentad', range(trange[0]+1,trange[1]+1)  ), ('lat', uved_av.lat), ('lon', uved_av.lon )])
    duveddy_av = duveddy_av/coslat/coslat/a
    duweddp_av = xr.DataArray( cfd(uwed_av.values,uwed_av.pfull*100,1),   [('pentad', range(trange[0]+1,trange[1]+1)  ), ('pfull', uwed_av.pfull ), ('lat', u_av.lat), ('lon', uwed_av.lon )])
    duweddp_av = duweddp_av[:,9,:,:]


    
    data_out = xr.Dataset({'ududx_av': ududx_av, 'vdudy_av': vdudy_av, 'wdudp_av': wdudp_av, 
                     'duueddx_av': duueddx_av, 'duveddy_av': duveddy_av, 'duweddp_av': duweddp_av, 'u_av': u_av[:,9,:,:], 'v_av': v_av   })


    return data_out
Exemplo n.º 3
0
def precip_hm(run_fol,years):

    year = years[0]
    rundata = load_year_xr(run_fol, year, pinterp=True)
    rundata.coords['pentad'] = (rundata.time // 5) -71
    mngrp = rundata.ucomp.groupby('pentad').mean(('time'))

    tot_p = xr.DataArray(np.zeros((72,128,len(years))), [('pentad', range(1,73) ), ('lon', rundata.lon), ('year', years)])
    u = xr.DataArray(np.zeros((72,17,128,len(years))), [('pentad', range(1,73)  ), ('pfull', rundata.pfull), ('lon', rundata.lon), ('year', years)])
    v = xr.DataArray(np.zeros((72,17,128,len(years))), [('pentad', range(1,73)  ), ('pfull', rundata.pfull), ('lon', rundata.lon), ('year', years)])
    phi = xr.DataArray(np.zeros((72,17,128,len(years))), [('pentad', range(1,73)  ), ('pfull', rundata.pfull), ('lon', rundata.lon), ('year', years)])

    i=0
    for year in years:
        print year
        rundata = load_year_xr(run_fol, year)
        rundata.coords['pentad'] = (rundata.time // 5) -71
        #take time mean
        conv_p = rundata.convection_rain[:,37,:].groupby('pentad').mean(('time'))
        cond_p = rundata.condensation_rain[:,37,:].groupby('pentad').mean(('time'))
        rundata = load_year_xr(run_fol, year, pinterp=True)
        rundata.coords['pentad'] = (rundata.time // 5) -71
        u[:,:,:,i] = rundata.ucomp[:,:,37,:].groupby('pentad').mean(('time'))
        v[:,:,:,i] = rundata.vcomp[:,:,37,:].groupby('pentad').mean(('time'))
        phi[:,:,:,i] = rundata.height[:,:,37,:].groupby('pentad').mean(('time'))
        tot_p[:,:,i] = (conv_p + cond_p)*86400
        i=i+1

    tot_p_clim = tot_p.mean(('year'))
    u_clim = u.mean(('year'))
    v_clim = v.mean(('year'))
    phi_clim = phi.mean(('year'))
    phi_ed_clim = phi_clim - phi_clim.mean(('lon'))

    pd_dic = pentad_dic(1)
    tickspace = range(20,61,5)
    labels = [pd_dic[k] for k in tickspace]  
    
    #plot    
    plt.figure(0)
    phi_ed_clim[:,2,:].plot.contourf(x='lon', y='pentad', levels=np.arange(-40.,40.,2.), add_label = False)
    tot_p_clim.plot.contour(x='lon', y='pentad',levels=[-1000.,6.,1000.], add_label = False, add_colorbar=False, colors='k')
    plt.yticks(tickspace,labels,rotation=25)
    plt.quiver(u_clim.lon[::3], u_clim.pentad[::2], u_clim[::2,2,::3], v_clim[::2,2,::3], headwidth=3)#, scale=500.)
    plt.plot([float(rundata.lonb[21]),float(rundata.lonb[21])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[26]),float(rundata.lonb[26])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[30]),float(rundata.lonb[30])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[35]),float(rundata.lonb[35])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[39]),float(rundata.lonb[39])],[0.,60.],'k')
    plt.ylim(20,60)
    plt.xlim(60,180)
    plt.xlabel('Longitude')
    plt.ylabel('Pentad')
    plt.title('850hPa geopotential anomalies, m')
    plt.savefig('/scratch/rg419/plots/mom_budg_work/geopot_hm_850.png')
    plt.clf()

    plt.figure(0)
    phi_ed_clim[:,9,:].plot.contourf(x='lon', y='pentad', levels=np.arange(-40.,40.,2.), add_label = False)
    tot_p_clim.plot.contour(x='lon', y='pentad',levels=[-1000.,6.,1000.], add_label = False, add_colorbar=False, colors='k')
    plt.yticks(tickspace,labels,rotation=25)
    plt.quiver(u_clim.lon[::3], u_clim.pentad[::2], u_clim[::2,9,::3], v_clim[::2,9,::3], headwidth=3)#, scale=500.)
    plt.plot([float(rundata.lonb[21]),float(rundata.lonb[21])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[26]),float(rundata.lonb[26])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[30]),float(rundata.lonb[30])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[35]),float(rundata.lonb[35])],[0.,60.],'k')
    plt.plot([float(rundata.lonb[39]),float(rundata.lonb[39])],[0.,60.],'k')
    plt.ylim(20,60)
    plt.xlim(60,180)
    plt.xlabel('Longitude')
    plt.ylabel('Pentad')
    plt.title('200hPa geopotential anomalies, m')
    plt.savefig('/scratch/rg419/plots/mom_budg_work/geopot_hm_200.png')
    plt.clf()
Exemplo n.º 4
0
def load_bs_vars(run_fol, years, lonrange=['all']):
    #set run name
    year = years[0]
    rundata = load_year_xr(run_fol, year, pinterp=False)
    rundata.coords['pentad'] = (rundata.time // 5) - 71
    mngrp = rundata.ucomp.groupby('pentad').mean(('time'))

    #Initialise arrays to load into
    cnvp = xr.DataArray(np.zeros((72, 64, len(years))),
                        [('pentad', range(1, 73)), ('lat', rundata.lat),
                         ('year', years)])
    cndp = xr.DataArray(np.zeros((72, 64, len(years))),
                        [('pentad', range(1, 73)), ('lat', rundata.lat),
                         ('year', years)])
    t_surf = xr.DataArray(np.zeros((72, 64, len(years))),
                          [('pentad', range(1, 73)), ('lat', rundata.lat),
                           ('year', years)])
    for year in years:
        print year
        rundata = load_year_xr(run_fol, year, pinterp=False)
        rundata.coords['pentad'] = (rundata.time // 5) - 71
        if lonrange[0] == 'all':
            cnvp[:, :, year -
                 years[0]] = rundata.convection_rain.groupby('pentad').mean(
                     ('time', 'lon'))
            cndp[:, :, year -
                 years[0]] = rundata.condensation_rain.groupby('pentad').mean(
                     ('time', 'lon'))
            t_surf[:, :,
                   year - years[0]] = rundata.t_surf.groupby('pentad').mean(
                       ('time', 'lon'))
        else:
            lonmin = np.min(
                [k for k, j in enumerate(rundata.lon) if j >= lonrange[0]])
            #print lonmin, rundata.lon[lonmin]
            lonmax = np.max(
                [k for k, j in enumerate(rundata.lon) if j <= lonrange[1]])
            #print lonmax, rundata.lon[lonmax]
            cnvp[:, :, year -
                 years[0]] = rundata.convection_rain[:, :,
                                                     lonmin:lonmax].groupby(
                                                         'pentad').mean(
                                                             ('time', 'lon'))
            cndp[:, :, year -
                 years[0]] = rundata.condensation_rain[:, :,
                                                       lonmin:lonmax].groupby(
                                                           'pentad').mean(
                                                               ('time', 'lon'))
            t_surf[:, :,
                   year - years[0]] = rundata.t_surf[:, :,
                                                     lonmin:lonmax].groupby(
                                                         'pentad').mean(
                                                             ('time', 'lon'))

    data_out = xr.Dataset({
        'totp': (cnvp.mean(('year')) + cndp.mean(('year'))) * 86400.,
        't_surf':
        t_surf.mean(('year'))
    })

    return data_out
Exemplo n.º 5
0
def plot_weather(inp_fol, years):

    year = years[0]
    rundata = load_year_xr(inp_fol, year)
    tot_p = xr.DataArray(np.zeros((72, 64, 128, len(years))),
                         [('pentad', range(1, 73)), ('lat', rundata.lat),
                          ('lon', rundata.lon), ('year', years)])
    tsurf = xr.DataArray(np.zeros((72, 64, 128, len(years))),
                         [('pentad', range(1, 73)), ('lat', rundata.lat),
                          ('lon', rundata.lon), ('year', years)])
    #w = xr.DataArray(np.zeros((72,64,128,len(years))), [('pentad', range(1,73) ), ('lat', rundata.lat), ('lon', rundata.lon), ('year', years)])

    if not 'aqua' in inp_fol:
        land_file = '/scratch/rg419/GFDL_model/GFDLmoistModel/exp/topo_10m/input/land.nc'
        land = xr.open_dataset(land_file)
        land_plot = xr.DataArray(land.land_mask.values, [('lat', rundata.lat),
                                                         ('lon', rundata.lon)])

    i = 0
    for year in years:
        print year
        rundata = load_year_xr(inp_fol, year)
        rundata.coords['pentad'] = (rundata.time // 5) - 71
        conv_p = rundata.convection_rain.groupby('pentad').mean(('time'))
        cond_p = rundata.condensation_rain.groupby('pentad').mean(('time'))
        tot_p[:, :, :, i] = (conv_p + cond_p) * 86400
        tsurf[:, :, :, i] = rundata.t_surf.groupby('pentad').mean(('time'))

        #rundata = load_year_xr(inp_fol, year, pinterp=True)
        #rundata.coords['pentad'] = (rundata.time // 5) -71
        #w[:,:,:,i] = rundata.omega[:,3,:,:].groupby('pentad').mean(('time'))

        i = i + 1

    tot_p_clim = tot_p.mean(('year'))
    tsurf_clim = tsurf.mean(('year'))
    #w_clim = w.mean(('year'))

    pd_dic = pentad_dic(1)

    for p in range(0, 72):
        print p
        tot_p_clim[p, 15:64, 21:66].plot.contourf(x='lon',
                                                  y='lat',
                                                  add_labels=False,
                                                  levels=range(0, 31, 3))
        cs = tsurf_clim[p, 15:64,
                        21:66].plot.contour(x='lon',
                                            y='lat',
                                            colors='w',
                                            add_labels=False,
                                            add_colorbar=False,
                                            levels=range(250, 321, 5))
        if not 'aqua' in inp_fol:
            land_plot.plot.contour(x='lon',
                                   y='lat',
                                   levels=np.arange(0., 2., 1.),
                                   colors='w',
                                   add_colorbar=False,
                                   add_labels=False)
        plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
        plt.ylim(0, 90)
        plt.xlim(60, 180)
        plt.title(pd_dic[p + 1])
        plt.tight_layout()
        plt.savefig('/scratch/rg419/plots/monsoon_analysis/' + inp_fol +
                    '/rain_and_t' + str(p) + '.png')
        plt.close()
Exemplo n.º 6
0
def mombudg_pd_fn(run_fol, years):
    #inp_fol = experiment name
    #nproc   = no of processors

    year = years[0]
    rundata = load_year_xr(run_fol, year, pinterp=True)
    rundata.coords['pentad'] = (rundata.time // 5) - 71

    #Define constants
    omega = 7.2921150e-5
    a = 6376.0e3  #radius used in model
    coslat = np.cos(rundata.lat * np.pi / 180)
    f = 2 * omega * np.sin(rundata.lat * np.pi / 180)

    #Initialise arrays to load into
    u = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                     [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                      ('lat', rundata.lat), ('year', years)])
    v = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                     [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                      ('lat', rundata.lat), ('year', years)])
    w = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                     [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                      ('lat', rundata.lat), ('year', years)])
    uu = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                      [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                       ('lat', rundata.lat), ('year', years)])
    uv = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                      [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                       ('lat', rundata.lat), ('year', years)])
    uw = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                      [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                       ('lat', rundata.lat), ('year', years)])
    phi = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                       [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                        ('lat', rundata.lat), ('year', years)])
    ddamp = xr.DataArray(np.zeros((72, 17, 64, len(years))),
                         [('pentad', range(1, 73)), ('pfull', rundata.pfull),
                          ('lat', rundata.lat), ('year', years)])

    for year in years:
        print year
        rundata = load_year_xr(run_fol, year, pinterp=True)
        rundata.coords['pentad'] = (rundata.time // 5) - 71
        u[:, :, :, year - years[0]] = rundata.ucomp.groupby('pentad').mean(
            ('time', 'lon'))
        v[:, :, :, year - years[0]] = rundata.vcomp.groupby('pentad').mean(
            ('time', 'lon'))
        w[:, :, :, year - years[0]] = rundata.omega.groupby('pentad').mean(
            ('time', 'lon'))
        uu[:, :, :, year - years[0]] = rundata.ucomp_sq.groupby('pentad').mean(
            ('time', 'lon'))
        uv[:, :, :,
           year - years[0]] = rundata.ucomp_vcomp.groupby('pentad').mean(
               ('time', 'lon'))
        uw[:, :, :,
           year - years[0]] = rundata.ucomp_omega.groupby('pentad').mean(
               ('time', 'lon'))
        phi[:, :, :, year - years[0]] = rundata.height.groupby('pentad').mean(
            ('time', 'lon'))
        ddamp[:, :, :, year -
              years[0]] = rundata.dt_ug_diffusion.groupby('pentad').mean(
                  ('time', 'lon'))

    #Take averages: u, v, uv, w, phi, damping terms
    u_av = u.mean(('year'))
    v_av = v.mean(('year'))
    w_av = w.mean(('year'))
    uu_av = uu.mean(('year'))
    uv_av = uv.mean(('year'))
    uw_av = uw.mean(('year'))
    phi_av = phi.mean(('year')) * 9.8

    ddamp_av = ddamp.mean(('year'))
    fv_av = v_av * f

    #Evaluate mean eddy products
    uued_av = uu_av - u_av * u_av
    uved_av = (uv_av - u_av * v_av) * coslat * coslat
    uwed_av = uw_av - u_av * w_av

    #Evaluate gradients needed

    dudy_av = xr.DataArray(
        cfd((u_av * coslat).values, u_av.lat * np.pi / 180, 2),
        [('pentad', range(1, 73)), ('pfull', u_av.pfull), ('lat', u_av.lat)])
    vdudy_av = v_av * dudy_av / coslat / a
    dudp_av = xr.DataArray(cfd(u_av.values, u_av.pfull * 100, 1),
                           [('pentad', range(1, 73)), ('pfull', u_av.pfull),
                            ('lat', u_av.lat)])
    wdudp_av = w_av * dudp_av

    duveddy_av = xr.DataArray(
        cfd(uved_av.values, uved_av.lat * np.pi / 180, 2),
        [('pentad', range(1, 73)), ('pfull', uued_av.pfull),
         ('lat', uued_av.lat)])
    duveddy_av = duveddy_av / coslat / coslat / a
    duweddp_av = xr.DataArray(cfd(uwed_av.values, uwed_av.pfull * 100, 1),
                              [('pentad', range(1, 73)),
                               ('pfull', uued_av.pfull), ('lat', uued_av.lat)])

    #evaluate sums of the terms
    mom_eddy = -(duveddy_av + duweddp_av)
    mom_mean = -(vdudy_av + wdudp_av)
    mom_sum = fv_av + ddamp_av + mom_eddy + mom_mean

    data_out = xr.Dataset({
        'fv_av': fv_av,
        'ddamp_av': ddamp_av,
        'mom_eddy': mom_eddy,
        'mom_mean': mom_mean,
        'mom_sum': mom_sum,
        'u_av': u_av,
        'v_av': v_av
    })

    return data_out
Exemplo n.º 7
0
def mombudg_lev_pd_fn(run_fol, years, trange):
    year = years[0]
    rundata = load_year_xr(run_fol, year, pinterp=True)
    rundata.coords['pentad'] = (rundata.time // 5) - 71
    mngrp = rundata.ucomp.groupby('pentad').mean(('time'))
    trl = trange[1] - trange[0]
    #Define constants
    omega = 7.2921150e-5
    a = 6376.0e3  #radius used in model
    coslat = np.cos(rundata.lat * np.pi / 180)
    f = 2 * omega * np.sin(rundata.lat * np.pi / 180)

    #Initialise arrays to load into
    u = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                     [('pentad', range(trange[0] + 1, trange[1] + 1)),
                      ('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    v = xr.DataArray(np.zeros((trl, 64, 128, len(years))),
                     [('pentad', range(trange[0] + 1, trange[1] + 1)),
                      ('lat', rundata.lat), ('lon', rundata.lon),
                      ('year', years)])
    w = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                     [('pentad', range(trange[0] + 1, trange[1] + 1)),
                      ('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    uu = xr.DataArray(np.zeros((trl, 64, 128, len(years))),
                      [('pentad', range(trange[0] + 1, trange[1] + 1)),
                       ('lat', rundata.lat), ('lon', rundata.lon),
                       ('year', years)])
    uv = xr.DataArray(np.zeros((trl, 64, 128, len(years))),
                      [('pentad', range(trange[0] + 1, trange[1] + 1)),
                       ('lat', rundata.lat), ('lon', rundata.lon),
                       ('year', years)])
    uw = xr.DataArray(np.zeros((trl, 17, 64, 128, len(years))),
                      [('pentad', range(trange[0] + 1, trange[1] + 1)),
                       ('pfull', rundata.pfull), ('lat', rundata.lat),
                       ('lon', rundata.lon), ('year', years)])
    phi = xr.DataArray(np.zeros((trl, 64, 128, len(years))),
                       [('pentad', range(trange[0] + 1, trange[1] + 1)),
                        ('lat', rundata.lat), ('lon', rundata.lon),
                        ('year', years)])
    ddamp = xr.DataArray(np.zeros((trl, 64, 128, len(years))),
                         [('pentad', range(trange[0] + 1, trange[1] + 1)),
                          ('lat', rundata.lat), ('lon', rundata.lon),
                          ('year', years)])

    for year in years:
        print year
        rundata = load_year_xr(run_fol, year, pinterp=True)
        rundata.coords['pentad'] = (rundata.time // 5) - 71
        u[:, :, :, :, year - years[0]] = rundata.ucomp.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], :, :, :]
        v[:, :, :, year - years[0]] = rundata.vcomp.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], 9, :, :]
        w[:, :, :, :, year - years[0]] = rundata.omega.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], :, :, :]
        uu[:, :, :, year - years[0]] = rundata.ucomp_sq.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], 9, :, :]
        uv[:, :, :,
           year - years[0]] = rundata.ucomp_vcomp.groupby('pentad').mean(
               ('time'))[trange[0]:trange[1], 9, :, :]
        uw[:, :, :, :,
           year - years[0]] = rundata.ucomp_omega.groupby('pentad').mean(
               ('time'))[trange[0]:trange[1], :, :, :]
        phi[:, :, :, year - years[0]] = rundata.height.groupby('pentad').mean(
            ('time'))[trange[0]:trange[1], 9, :, :]
        ddamp[:, :, :, year -
              years[0]] = rundata.dt_ug_diffusion.groupby('pentad').mean(
                  ('time'))[trange[0]:trange[1], 9, :, :]

    #Take averages: u, v, uv, w, phi, damping terms
    u_av = u.mean(('year'))
    v_av = v.mean(('year'))
    w_av = w.mean(('year'))
    uu_av = uu.mean(('year'))
    uv_av = uv.mean(('year'))
    uw_av = uw.mean(('year'))
    phi_av = phi.mean(('year')) * 9.8

    ddamp_av = ddamp.mean(('year'))
    fv_av = v_av * f

    #Evaluate mean eddy products
    uued_av = uu_av - u_av[:, 9, :, :] * u_av[:, 9, :, :]
    uved_av = (uv_av - u_av[:, 9, :, :] * v_av) * coslat * coslat
    uwed_av = uw_av - u_av * w_av

    #Evaluate gradients needed
    dudx_av = xr.DataArray(
        cfd(u_av[:, 9, :, :].values, u_av.lon * np.pi / 180, 2),
        [('pentad', range(trange[0] + 1, trange[1] + 1)), ('lat', u_av.lat),
         ('lon', u_av.lon)])
    ududx_av = u_av[:, 9, :, :] * dudx_av / coslat / a

    dudy_av = xr.DataArray(
        cfd((u_av[:, 9, :, :] * coslat).values, u_av.lat * np.pi / 180, 1),
        [('pentad', range(trange[0] + 1, trange[1] + 1)), ('lat', u_av.lat),
         ('lon', u_av.lon)])
    vdudy_av = v_av * dudy_av / coslat / a

    dudp_av = xr.DataArray(cfd(u_av.values, u_av.pfull * 100, 1),
                           [('pentad', range(trange[0] + 1, trange[1] + 1)),
                            ('pfull', u_av.pfull), ('lat', u_av.lat),
                            ('lon', u_av.lon)])
    wdudp_av = w_av[:, 9, :, :] * dudp_av[:, 9, :, :]

    duueddx_av = xr.DataArray(
        cfd(uued_av.values, uued_av.lon * np.pi / 180, 2),
        [('pentad', range(trange[0] + 1, trange[1] + 1)), ('lat', u_av.lat),
         ('lon', uued_av.lon)])
    duueddx_av = duueddx_av / coslat / a
    duveddy_av = xr.DataArray(
        cfd(uved_av.values, uved_av.lat * np.pi / 180, 1),
        [('pentad', range(trange[0] + 1, trange[1] + 1)), ('lat', uved_av.lat),
         ('lon', uved_av.lon)])
    duveddy_av = duveddy_av / coslat / coslat / a
    duweddp_av = xr.DataArray(cfd(uwed_av.values, uwed_av.pfull * 100, 1),
                              [('pentad', range(trange[0] + 1, trange[1] + 1)),
                               ('pfull', uwed_av.pfull), ('lat', u_av.lat),
                               ('lon', uwed_av.lon)])
    duweddp_av = duweddp_av[:, 9, :, :]

    dphidx_av = xr.DataArray(cfd(phi_av.values, phi_av.lon * np.pi / 180, 2),
                             [('pentad', range(trange[0] + 1, trange[1] + 1)),
                              ('lat', u_av.lat), ('lon', phi_av.lon)])
    dphidx_av = -1 * dphidx_av / coslat / a

    #evaluate sums of the terms
    mom_eddy = -(duueddx_av + duveddy_av + duweddp_av)
    mom_mean = -(ududx_av + vdudy_av + wdudp_av)
    mom_sum = fv_av + ddamp_av + dphidx_av + mom_eddy + mom_mean

    data_out = xr.Dataset({
        'dphidx_av': dphidx_av,
        'fv_av': fv_av,
        'ddamp_av': ddamp_av,
        'mom_eddy': mom_eddy,
        'mom_mean': mom_mean,
        'mom_sum': mom_sum,
        'u_av': u_av[:, 9, :, :],
        'v_av': v_av
    })

    return data_out
Exemplo n.º 8
0
# Plot the streamfunction and jets for the 2m aquaplanet experiment before and after onset, hoping to get a similar result to B+S

#onset pentad:
#topo: 41.25
#flat:41.8
#2m: 37.48
#10m:46.81

from physics import mass_streamfunction
from data_handling import load_year_xr, pentad_dic
import matplotlib.pyplot as plt
import xarray as xr
import numpy as np

run_fol = 'aquaplanet_10m'
rundata = load_year_xr('aquaplanet_10m', 21)
years = range(21, 41)
pd_dic = pentad_dic(1)

u = xr.DataArray(np.zeros((72, 40, 64, len(years))), [('pentad', range(1, 73)),
                                                      ('pfull', rundata.pfull),
                                                      ('lat', rundata.lat),
                                                      ('year', years)])
psi = xr.DataArray(np.zeros((64, 72, 40, len(years))),
                   [('lat', rundata.lat), ('pentad', range(1, 73)),
                    ('pfull', rundata.pfull), ('year', years)])

i = 0
for year in years:
    print year
    rundata = load_year_xr(run_fol, year)
def mombudg_2d_an_fn(inp_fol, nproc, years, era=True):

    #inp_fol = experiment name
    #nproc   = no of processors

    #set run name
    run_fol = inp_fol + '/np' + nproc
    year = years[0]
    rundata = load_year_xr(run_fol, year, pinterp=True, era=era)

    #Define constants
    omega = 7.2921150e-5
    a = 6376.0e3  #radius used in model
    coslat = np.cos(rundata.lat * np.pi / 180)
    f = 2 * omega * np.sin(rundata.lat * np.pi / 180)
    if era == True:
        plevs = 17
    else:
        plevs = 40
    #Initialise arrays to load into
    u = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                     [('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    v = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                     [('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    w = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                     [('pfull', rundata.pfull), ('lat', rundata.lat),
                      ('lon', rundata.lon), ('year', years)])
    uu = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                      [('pfull', rundata.pfull), ('lat', rundata.lat),
                       ('lon', rundata.lon), ('year', years)])
    uv = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                      [('pfull', rundata.pfull), ('lat', rundata.lat),
                       ('lon', rundata.lon), ('year', years)])
    uw = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                      [('pfull', rundata.pfull), ('lat', rundata.lat),
                       ('lon', rundata.lon), ('year', years)])
    phi = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                       [('pfull', rundata.pfull), ('lat', rundata.lat),
                        ('lon', rundata.lon), ('year', years)])
    ddamp = xr.DataArray(np.zeros((plevs, 64, 128, len(years))),
                         [('pfull', rundata.pfull), ('lat', rundata.lat),
                          ('lon', rundata.lon), ('year', years)])

    for year in years:
        print year
        rundata = load_year_xr(run_fol, year, pinterp=True, era=era)
        rundata.coords['pentad'] = (rundata.time // 5) + 1
        u[:, :, :, year - years[0]] = rundata.ucomp.mean(('time'))
        v[:, :, :, year - years[0]] = rundata.vcomp.mean(('time'))
        w[:, :, :, year - years[0]] = rundata.omega.mean(('time'))
        uu[:, :, :, year - years[0]] = rundata.ucomp_sq.mean(('time'))
        uv[:, :, :, year - years[0]] = rundata.ucomp_vcomp.mean(('time'))
        uw[:, :, :, year - years[0]] = rundata.ucomp_omega.mean(('time'))
        phi[:, :, :, year - years[0]] = rundata.height.mean(('time'))
        ddamp[:, :, :, year - years[0]] = rundata.dt_ug_diffusion.mean(
            ('time'))

    #Take averages: u, v, uv, w, phi, damping terms
    u_av = u.mean(('year'))
    v_av = v.mean(('year'))
    w_av = w.mean(('year'))
    uu_av = uu.mean(('year'))
    uv_av = uv.mean(('year'))
    uw_av = uw.mean(('year'))
    phi_av = phi.mean(('year')) * 9.8

    ddamp_av = ddamp.mean(('year'))
    fv_av = v_av * f

    #Evaluate mean eddy products
    uued_av = uu_av - u_av * u_av
    uved_av = (uv_av - u_av * v_av) * coslat * coslat
    uwed_av = uw_av - u_av * w_av

    #Evaluate gradients needed
    dudx_av = xr.DataArray(cfd(u_av.values, u_av.lon * np.pi / 180, 2),
                           [('pfull', u_av.pfull), ('lat', u_av.lat),
                            ('lon', u_av.lon)])
    ududx_av = u_av * dudx_av / coslat / a
    dudy_av = xr.DataArray(
        cfd((u_av * coslat).values, u_av.lat * np.pi / 180, 1),
        [('pfull', u_av.pfull), ('lat', u_av.lat), ('lon', u_av.lon)])
    vdudy_av = v_av * dudy_av / coslat / a
    dudp_av = xr.DataArray(cfd(u_av.values, u_av.pfull * 100, 0),
                           [('pfull', u_av.pfull), ('lat', u_av.lat),
                            ('lon', u_av.lon)])
    wdudp_av = w_av * dudp_av

    duueddx_av = xr.DataArray(
        cfd(uued_av.values, uued_av.lon * np.pi / 180, 2),
        [('pfull', uued_av.pfull), ('lat', uued_av.lat), ('lon', uued_av.lon)])
    duueddx_av = duueddx_av / coslat / a
    duveddy_av = xr.DataArray(
        cfd(uved_av.values, uved_av.lat * np.pi / 180, 1),
        [('pfull', uued_av.pfull), ('lat', uued_av.lat), ('lon', uued_av.lon)])
    duveddy_av = duveddy_av / coslat / coslat / a
    duweddp_av = xr.DataArray(cfd(uwed_av.values, uwed_av.pfull * 100, 0),
                              [('pfull', uued_av.pfull), ('lat', uued_av.lat),
                               ('lon', uued_av.lon)])

    dphidx_av = xr.DataArray(cfd(phi_av.values, phi_av.lon * np.pi / 180, 2),
                             [('pfull', phi_av.pfull), ('lat', phi_av.lat),
                              ('lon', phi_av.lon)])
    dphidx_av = -1 * dphidx_av / coslat / a

    #evaluate sums of the terms
    mom_eddy = -(duueddx_av + duveddy_av + duweddp_av)
    mom_mean = -(ududx_av + vdudy_av + wdudp_av)
    mom_sum = fv_av + ddamp_av + dphidx_av + mom_eddy + mom_mean

    data_out = xr.Dataset({
        'dphidx_av': dphidx_av,
        'fv_av': fv_av,
        'ddamp_av': ddamp_av,
        'mom_eddy': mom_eddy,
        'mom_mean': mom_mean,
        'mom_sum': mom_sum,
        'u_av': u_av,
        'v_av': v_av
    })

    return data_out
Exemplo n.º 10
0
def plot_pd_mom_fn(inp_fol, years):

    year = years[0]
    rundata = load_year_xr(inp_fol, year)
    tot_p = xr.DataArray(np.zeros((72, 128, len(years))),
                         [('pentad', range(1, 73)), ('lon', rundata.lon),
                          ('year', years)])

    i = 0
    for year in years:
        print year
        rundata = load_year_xr(inp_fol, year)
        rundata.coords['pentad'] = (rundata.time // 5) - 71
        conv_p = rundata.convection_rain[:, 37, :].groupby('pentad').mean(
            ('time'))
        cond_p = rundata.condensation_rain[:, 37, :].groupby('pentad').mean(
            ('time'))
        tot_p[:, :, i] = (conv_p + cond_p) * 86400
        i = i + 1

    tot_p_clim = tot_p.mean(('year'))

    data, wspd = mombudg_lon_pd_fn(inp_fol, years, [19, 61])

    mn_dic = month_dic(1)
    tickspace = range(25, 60, 6)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    def plot_mom_var(var, levels):
        var_dic = {
            'fv_av': 'fv',
            'mom_eddy': 'Eddy advective terms',
            'mom_mean': 'Mean state advective terms',
            'mom_sum': 'Residual',
            'dphidx_av': 'Geopotential gradient'
        }
        if var == 'fv_mn_imb':
            plot_data = data.data_vars['fv_av'] + data.data_vars['mom_mean']
        else:
            plot_data = data.data_vars[var]
        plot_data = plot_data * 10000.
        g = plot_data.plot.contourf(x='lon',
                                    y='pentad',
                                    levels=levels,
                                    add_labels=False,
                                    add_colorbar=False,
                                    extend='both')
        cb1 = plt.colorbar(g)
        cb1.set_label('$\displaystyle10^{-4}m/s^2$')
        plt.quiver(data.lon[::3],
                   data.pentad[::2],
                   wspd.u_av[::2, ::3],
                   wspd.v_av[::2, ::3],
                   headwidth=3)  #, scale=500.)
        #tickspace = range(25,60,10)
        #labels = [pd_dic[k] for k in tickspace]
        plt.ylim(20, 60)
        plt.xlim(60, 180)
        if not 'aqua' in inp_fol:
            plt.plot([float(rundata.lonb[21]),
                      float(rundata.lonb[21])], [0., 60.], 'k')
            plt.plot([float(rundata.lonb[26]),
                      float(rundata.lonb[26])], [0., 60.], 'k')
            plt.plot([float(rundata.lonb[30]),
                      float(rundata.lonb[30])], [0., 60.], 'k')
            plt.plot([float(rundata.lonb[35]),
                      float(rundata.lonb[35])], [0., 60.], 'k')
            plt.plot([float(rundata.lonb[39]),
                      float(rundata.lonb[39])], [0., 60.], 'k')
            plt.fill_between(
                [float(rundata.lonb[26]),
                 float(rundata.lonb[30])],
                0.,
                60.,
                facecolor='gray',
                alpha=0.5)
            plt.fill_between(
                [float(rundata.lonb[35]),
                 float(rundata.lonb[39])],
                0.,
                60.,
                facecolor='gray',
                alpha=0.5)
        else:
            plt.plot([float(rundata.lonb[21]),
                      float(rundata.lonb[21])], [0., 60.], 'k--')
            plt.plot([float(rundata.lonb[26]),
                      float(rundata.lonb[26])], [0., 60.], 'k--')
            plt.plot([float(rundata.lonb[30]),
                      float(rundata.lonb[30])], [0., 60.], 'k--')
            plt.plot([float(rundata.lonb[35]),
                      float(rundata.lonb[35])], [0., 60.], 'k--')
            plt.plot([float(rundata.lonb[39]),
                      float(rundata.lonb[39])], [0., 60.], 'k--')
        tot_p_clim.plot.contour(x='lon',
                                y='pentad',
                                colors='k',
                                levels=[-1000., 6., 1000.],
                                add_labels=False,
                                add_colorbar=False)
        #plt.contour(tot_p_clim.lon, tot_p_clim.pentad, tot_p_clim.values, colors='k', levels=[-1000.,6.,1000.], linewidth=10.)
        plt.xlabel('Longitude')
        plt.yticks(tickspace, labels, rotation=25)
        #plt.ylabel('Pentad')
        #plt.title(var_dic[var] + ', $\displaystyle10^{-4}m/s^2$')
        plt.tight_layout()
        plt.savefig('/scratch/rg419/plots/mom_budg_work/' + inp_fol + '/' +
                    var + '_30yr.png')
        plt.close()

    vars = [
        'fv_mn_imb', 'fv_av', 'mom_eddy', 'mom_mean', 'mom_sum', 'dphidx_av'
    ]
    for var in vars:
        plot_mom_var(var, np.arange(-2., 2.1, 0.2))