Exemplo n.º 1
0
 def train(cls, user_id):
     #默认加载data下的数据
     print('user_id', user_id)
     FLAGS = tf.flags.FLAGS
     cls.my_data = dh.data_help(user_id=user_id)
     #cls.my_data = dh.data_help()
     checkpoint_file = tf.train.latest_checkpoint(
         os.path.join(cls.my_data.file_path, 'runs', 'checkpoints'))
     graph = tf.Graph()
     with graph.as_default():
         session_conf = tf.ConfigProto(
             allow_soft_placement=FLAGS.allow_soft_placement,
             log_device_placement=FLAGS.log_device_placement)
         cls.sess = tf.Session(config=session_conf)
         with cls.sess.as_default():
             saver = tf.train.import_meta_graph(
                 "{}.meta".format(checkpoint_file))
             saver.restore(cls.sess, checkpoint_file)
             cls.input_x = graph.get_operation_by_name("input_x").outputs[0]
             cls.dropout_keep_prob = graph.get_operation_by_name(
                 "dropout_keep_prob").outputs[0]
             cls.predictions = graph.get_operation_by_name(
                 "output/predictions").outputs[0]
             cls.probs = graph.get_operation_by_name(
                 "output/probs").outputs[0]
Exemplo n.º 2
0
                        "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False,
                        "Log placement of ops on devices")

parser = argparse.ArgumentParser()

parser.add_argument('-u',
                    '--user_id',
                    help='mysql user-id',
                    type=int,
                    default='2')
args = parser.parse_args()

FLAGS = tf.flags.FLAGS
print("user_id:%d" % (args.user_id))
my_data = data_help.data_help(user_id=args.user_id)
x_train, y_train, x_dev, y_dev = my_data.get_test_train()

#将测试数据写成pickle数据
my_data.write_to_pickle("test_data.pickle", x_dev, y_dev)

with tf.Graph().as_default():
    session_conf = tf.ConfigProto(
        allow_soft_placement=FLAGS.allow_soft_placement,
        log_device_placement=FLAGS.log_device_placement)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        cnn = TextCNN(sequence_length=x_train.shape[1],
                      num_classes=y_train.shape[1],
                      vocab_size=my_data.Vocab_Size,
                      embedding_size=FLAGS.embedding_dim,
Exemplo n.º 3
0
tf.flags.DEFINE_boolean("eval_train", True, "Evaluate on all training data")

# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True,
                        "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False,
                        "Log placement of ops on devices")

FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
    print("{}={}".format(attr.upper(), value))
print("")

my_data = dh.data_help()
# CHANGE THIS: Load data. Load your own data here
if FLAGS.eval_train:
    x_test, y_test = my_data.read_from_pickle("test_data.pickle")
    y_test = np.argmax(y_test, axis=1)
else:
    x_raw = ["a masterpiece four years in the making", "everything is off."]
    y_test = [1, 0]

print("\nEvaluating...\n")

# Evaluation
# ==================================================
checkpoint_file = tf.train.latest_checkpoint(
    os.path.join(my_data.file_path, 'runs', 'checkpoints'))
graph = tf.Graph()
Exemplo n.º 4
0
tf.flags.DEFINE_boolean("log_device_placement", False,
                        "Log placement of ops on devices")

FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
Parameters = ''
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
    temp = "{}={}".format(attr.upper(), value)
    Parameters = temp + ' ' + Parameters
    print(temp)
print("")

# Load data
print("Loading data...")
my_data = data_help.data_help()
y = my_data.build_labels()
x, ans, subject = my_data.build_vocab()
x_train, y_train, x_dev, y_dev = my_data.get_test_train(x, y)

#将测试数据写成pickle数据
my_data.write_to_pickle("test_data.pickle", x_dev, y_dev)

print(x_train.shape, x_dev.shape)

with tf.Graph().as_default():
    session_conf = tf.ConfigProto(
        allow_soft_placement=FLAGS.allow_soft_placement,
        log_device_placement=FLAGS.log_device_placement)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
Exemplo n.º 5
0
import json
import xlrd 
import data_help 

s = requests
data_lookup={"method":'lookup','id':1,'jsonrpc':2.0,'params':{'user_id':2}}
data_chat={"method":'chat','id':1,'jsonrpc':2.0,'params':{'user_id':2,"quest":"银联二维码支付怎么用"}}
data_retrain={"method":'retrain','id':1,'jsonrpc':2.0,'params':{'user_id':2}}
right=0
total=0

def send_json(quest):
    data_chat={"method":'chat','id':1,'jsonrpc':2.0,'params':{'user_id':2,"quest":quest}}
    r = s.post('http://127.0.0.1:8000/deep_chat', json.dumps(data_chat))
    r.encoding = 'utf-8'
    ans = eval(r.text)   
    return ans['result']['answer']
 
my_data=data_help.data_help(bProcessData=False,user_id=2)      
for key,values in my_data.temp.items():
    for value in values:
        total+=1
        if(values.index(value)==0):
            right_answer=send_json(value)
        else:
            if right_answer == send_json(value):
                right+=1
        
print("%d/%d"%(right,total))