def evaluate_snli_final(esnli_net, criterion_expl, dataset, data, expl_no_unk,
                        word_vec, word_index, batch_size, print_every,
                        current_run_dir):
    assert dataset in ['snli_dev', 'snli_test']
    print(dataset.upper())
    esnli_net.eval()

    correct = 0.
    correct_labels_expl = 0.
    cum_test_ppl = 0
    cum_test_n_words = 0

    headers = [
        "gold_label", "Premise", "Hypothesis", "pred_label", "pred_expl",
        "pred_lbl_decoder", "Expl_1", "Expl_2", "Expl_3"
    ]
    expl_csv = os.path.join(
        current_run_dir,
        time.strftime("%d:%m") + "_" + time.strftime("%H:%M:%S") + "_" +
        dataset + ".csv")
    remove_file(expl_csv)
    expl_f = open(expl_csv, "a")
    writer = csv.writer(expl_f)
    writer.writerow(headers)

    s1 = data['s1']
    s2 = data['s2']
    expl_1 = data['expl_1']
    expl_2 = data['expl_2']
    expl_3 = data['expl_3']
    label = data['label']
    label_expl = data['label_expl']

    for i in range(0, len(s1), batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + batch_size], word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + batch_size], word_vec)
        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(
            s2_batch.cuda())
        tgt_label_batch = Variable(torch.LongTensor(label[i:i +
                                                          batch_size])).cuda()
        tgt_label_expl_batch = label_expl[i:i + batch_size]

        # print example
        if i % print_every == 0:
            print("Final SNLI example from " + dataset)
            print("Sentence1:  ", ' '.join(s1[i]), " LENGHT: ", s1_len[0])
            print("Sentence2:  ", ' '.join(s2[i]), " LENGHT: ", s2_len[0])
            print("Gold label:  ", get_key_from_val(label[i], NLI_DIC_LABELS))

        out_lbl = [0, 1, 2, 3]
        for index in range(1, 4):
            expl = eval("expl_" + str(index))
            input_expl_batch, _ = get_batch(expl[i:i + batch_size], word_vec)
            input_expl_batch = Variable(input_expl_batch[:-1].cuda())
            if i % print_every == 0:
                print("Explanation " + str(index) + " :  ", ' '.join(expl[i]))
                print("Predicted label by decoder " + str(index) + " :  ",
                      ' '.join(expl[i][0]))
            tgt_expl_batch, lens_tgt_expl = get_target_expl_batch(
                expl[i:i + batch_size], word_index)
            assert tgt_expl_batch.dim() == 2, "tgt_expl_batch.dim()=" + str(
                tgt_expl_batch.dim())
            tgt_expl_batch = Variable(tgt_expl_batch).cuda()
            if i % print_every == 0:
                print(
                    "Target expl " + str(index) + " :  ",
                    get_sentence_from_indices(word_index, tgt_expl_batch[:,
                                                                         0]),
                    " LENGHT: ", lens_tgt_expl[0])

            # model forward, tgt_labels is still None bcs in test mode we get the predicted labels
            out_expl, out_lbl[index - 1] = esnli_net((s1_batch, s1_len),
                                                     (s2_batch, s2_len),
                                                     input_expl_batch,
                                                     mode="teacher")
            # ppl
            loss_expl = criterion_expl(
                out_expl.view(out_expl.size(0) * out_expl.size(1), -1),
                tgt_expl_batch.view(
                    tgt_expl_batch.size(0) * tgt_expl_batch.size(1)))
            cum_test_n_words += lens_tgt_expl.sum()
            cum_test_ppl += loss_expl.data[0]
            answer_idx = torch.max(out_expl, 2)[1]
            if i % print_every == 0:
                print("Decoded explanation " + str(index) + " :  ",
                      get_sentence_from_indices(word_index, answer_idx[:, 0]))
                print("\n")

        pred_expls, out_lbl[3] = esnli_net((s1_batch, s1_len),
                                           (s2_batch, s2_len),
                                           input_expl_batch,
                                           mode="forloop")
        if i % print_every == 0:
            print("Fully decoded explanation: ",
                  pred_expls[0].strip().split()[1:-1])
            print("Predicted label from decoder: ",
                  pred_expls[0].strip().split()[0])

        for b in range(len(pred_expls)):
            assert tgt_label_expl_batch[b] in [
                'entailment', 'neutral', 'contradiction'
            ]
            if len(pred_expls[b]) > 0:
                words = pred_expls[b].strip().split()
                assert words[0] in ['entailment', 'neutral',
                                    'contradiction'], words[0]
                if words[0] == tgt_label_expl_batch[b]:
                    correct_labels_expl += 1

        assert (torch.equal(out_lbl[0], out_lbl[1]))
        assert (torch.equal(out_lbl[1], out_lbl[2]))
        assert (torch.equal(out_lbl[2], out_lbl[3]))

        # accuracy
        pred = out_lbl[0].data.max(1)[1]
        if i % print_every == 0:
            print("Predicted label from classifier:  ",
                  get_key_from_val(pred[0], NLI_DIC_LABELS), "\n\n\n")
        correct += pred.long().eq(tgt_label_batch.data.long()).cpu().sum()

        # write csv row of predictions
        for j in range(len(pred_expls)):
            row = []
            row.append(get_key_from_val(label[i + j], NLI_DIC_LABELS))
            row.append(' '.join(s1[i + j][1:-1]))
            row.append(' '.join(s2[i + j][1:-1]))
            row.append(get_key_from_val(pred[j], NLI_DIC_LABELS))
            row.append(' '.join(pred_expls[j].strip().split()[1:-1]))
            assert pred_expls[j].strip().split()[0] in [
                'entailment', 'contradiction', 'neutral'
            ], pred_expls[j].strip().split()[0]
            row.append(pred_expls[j].strip().split()[0])
            #row.append(' '.join(expl_1[i+j][2:-1]))
            #row.append(' '.join(expl_2[i+j][2:-1]))
            #row.append(' '.join(expl_3[i+j][2:-1]))
            row.append(expl_no_unk['expl_1'][i + j])
            row.append(expl_no_unk['expl_2'][i + j])
            row.append(expl_no_unk['expl_3'][i + j])
            writer.writerow(row)

    eval_acc = round(100 * correct / len(s1), 2)
    eval_acc_label_expl = round(100 * correct_labels_expl / len(s1), 2)
    eval_ppl = math.exp(cum_test_ppl / cum_test_n_words)

    expl_f.close()
    bleu_score = 100 * bleu_prediction(expl_csv, expl_no_unk)

    print(dataset.upper() + ' SNLI accuracy: ', eval_acc, 'bleu score: ',
          bleu_score, 'ppl: ', eval_ppl, 'eval_acc_label_expl: ',
          eval_acc_label_expl)
    return eval_acc, round(bleu_score, 2), round(eval_ppl,
                                                 2), eval_acc_label_expl
Exemplo n.º 2
0
def evaluate_dev(epoch):
    esnli_net.eval()
    global val_acc_best, val_ppl_best, stop_training, last_improvement_epoch

    correct = 0.
    cum_dev_ppl = 0
    cum_dev_n_words = 0

    print('\DEV : Epoch {0}'.format(epoch))

    # eSNLI
    s1 = snli_dev['s1']
    s2 = snli_dev['s2']
    expl_1 = snli_dev['expl_1']
    expl_2 = snli_dev['expl_2']
    expl_3 = snli_dev['expl_3']
    label = snli_dev['label']

    for i in range(0, len(s1), params.eval_batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + params.eval_batch_size],
                                     word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + params.eval_batch_size],
                                     word_vec)
        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(
            s2_batch.cuda())
        tgt_label_batch = Variable(
            torch.LongTensor(label[i:i + params.eval_batch_size])).cuda()

        # print example
        if i % params.print_every == 0:
            print current_run_dir, '\n'
            print "SNLI DEV example"
            print "Sentence1:  ", ' '.join(s1[i]), " LENGTH: ", s1_len[0]
            print "Sentence2:  ", ' '.join(s2[i]), " LENGTH: ", s2_len[0]
            print "Gold label:  ", get_key_from_val(label[i], NLI_DIC_LABELS)

        out_lbl = [0, 1, 2]
        for index in range(1, 4):
            expl = eval("expl_" + str(index))
            input_expl_batch, _ = get_batch(expl[i:i + params.eval_batch_size],
                                            word_vec)
            input_expl_batch = Variable(input_expl_batch[:-1].cuda())
            if i % params.print_every == 0:
                print "Explanation " + str(index) + " :  ", ' '.join(expl[i])
            tgt_expl_batch, lens_tgt_expl = get_target_expl_batch(
                expl[i:i + params.eval_batch_size], word_index)
            assert tgt_expl_batch.dim() == 2, "tgt_expl_batch.dim()=" + str(
                tgt_expl_batch.dim())
            tgt_expl_batch = Variable(tgt_expl_batch).cuda()
            if i % params.print_every == 0:
                print "Target expl " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index,
                        tgt_expl_batch[:, 0]), " LENGHT: ", lens_tgt_expl[0]

            # model forward, tgt_label is None for both v1 and v2 bcs it's test time for v2
            out_expl, out_lbl[index - 1] = esnli_net(
                (s1_batch, s1_len), (s2_batch, s2_len), input_expl_batch,
                'teacher')
            # ppl
            loss_expl = criterion_expl(
                out_expl.view(out_expl.size(0) * out_expl.size(1), -1),
                tgt_expl_batch.view(
                    tgt_expl_batch.size(0) * tgt_expl_batch.size(1)))
            cum_dev_n_words += lens_tgt_expl.sum()
            cum_dev_ppl += loss_expl.data[0]
            answer_idx = torch.max(out_expl, 2)[1]
            if i % params.print_every == 0:
                print "Decoded explanation " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index, answer_idx[:, 0])
                print "\n"

        assert torch.equal(out_lbl[0], out_lbl[1]), "out_lbl[0]: " + str(
            out_lbl[0]) + " while " + "out_lbl[1]: " + str(out_lbl[1])
        assert torch.equal(out_lbl[1], out_lbl[2]), "out_lbl[1]: " + str(
            out_lbl[1]) + " while " + "out_lbl[2]: " + str(out_lbl[2])
        # accuracy
        pred = out_lbl[0].data.max(1)[1]
        if i % params.print_every == 0:
            print "Predicted label:  ", get_key_from_val(
                pred[0], NLI_DIC_LABELS), "\n\n\n"
        correct += pred.long().eq(tgt_label_batch.data.long()).cpu().sum()

    total_dev_points = len(s1)

    # accuracy
    eval_acc = round(100 * correct / total_dev_points, 2)
    print 'togrep : results : epoch {0} ; mean accuracy {1} '.format(
        epoch, eval_acc)

    dev_ppl.append(math.exp(cum_dev_ppl / cum_dev_n_words))
    current_best_model_path = None
    current_best_model_state_dict_path = None

    if eval_acc > val_acc_best or dev_ppl[-1] < val_ppl_best:
        last_improvement_epoch = epoch

        # if alpha > 0 we only save the model if increase in ACC
        if params.alpha > 0.01 and eval_acc > val_acc_best:
            print('saving model at epoch {0}'.format(epoch))
            # save with torch.save
            best_model_prefix = os.path.join(current_run_dir, 'best_devacc_')
            current_best_model_path = best_model_prefix + '_devACC{0:.3f}_devppl{1:.3f}__epoch_{2}_model.pt'.format(
                eval_acc, dev_ppl[-1], epoch)
            torch.save(esnli_net, current_best_model_path)
            for f in glob.glob(best_model_prefix + '*'):
                if f != current_best_model_path:
                    os.remove(f)
            # also save model.state_dict()
            best_state_dict_prefix = os.path.join(current_run_dir,
                                                  'state_dict_best_devacc_')
            current_best_model_state_dict_path = best_state_dict_prefix + '_devACC{0:.3f}_devppl{1:.3f}__epoch_{2}_model.pt'.format(
                eval_acc, dev_ppl[-1], epoch)
            state = {
                'model_state': esnli_net.state_dict(),
                'config_model': config_nli_model,
                'params': params
            }
            torch.save(state, current_best_model_state_dict_path)
            for f in glob.glob(best_state_dict_prefix + '*'):
                if f != current_best_model_state_dict_path:
                    os.remove(f)
            val_acc_best = eval_acc
            if dev_ppl[-1] < val_ppl_best:
                val_ppl_best = dev_ppl[-1]

        # if alpha = 0 (EXPL_ONLY) we only save the model if decrease in PPL
        elif params.alpha < 0.01 and dev_ppl[-1] < val_ppl_best:
            print('saving model at epoch {0}'.format(epoch))
            # save with torch.save
            best_model_prefix = os.path.join(current_run_dir, 'best_devppl_')
            current_best_model_path = best_model_prefix + '_devPPL{0:.3f}__epoch_{1}_model.pt'.format(
                dev_ppl[-1], epoch)
            torch.save(esnli_net, current_best_model_path)
            for f in glob.glob(best_model_prefix + '*'):
                if f != current_best_model_path:
                    os.remove(f)
            # save model.state_dict()
            best_state_dict_prefix = os.path.join(current_run_dir,
                                                  'state_dict_best_devppl_')
            current_best_model_state_dict_path = best_state_dict_prefix + '_devPPL{0:.3f}__epoch_{1}_model.pt'.format(
                dev_ppl[-1], epoch)
            state = {
                'model_state': esnli_net.state_dict(),
                'config_model': config_nli_model,
                'params': params
            }
            torch.save(state, current_best_model_state_dict_path)
            for f in glob.glob(best_state_dict_prefix + '*'):
                if f != current_best_model_state_dict_path:
                    os.remove(f)
            val_ppl_best = dev_ppl[-1]

    else:  # no improvement at all, regardless whether it's in PPL or ACC
        if 'sgd' in params.optimizer:
            optimizer.param_groups[0][
                'lr'] = optimizer.param_groups[0]['lr'] / params.lrshrink
            print('Shrinking lr by : {0}. New lr = {1}'.format(
                params.lrshrink, optimizer.param_groups[0]['lr']))
            if optimizer.param_groups[0]['lr'] < params.minlr:
                stop_training = True
                print "Stopping training because LR < ", params.minlr

        # for any optimizer early stopping
        if (epoch - last_improvement_epoch > params.early_stopping_epochs):
            stop_training = True
            print "Stopping training because no more improvement done in the last ", params.early_stopping_epochs, " epochs"

    return eval_acc, current_best_model_state_dict_path
def eval_datasets_without_expl(esnli_net, which_set, data, word_vec,
                               word_emb_dim, batch_size, print_every,
                               current_run_dir):

    dict_labels = NLI_DIC_LABELS

    esnli_net.eval()
    correct = 0.
    correct_labels_expl = 0.

    s1 = data['s1']
    s2 = data['s2']
    label = data['label']
    label_expl = data['label_expl']

    headers = [
        "gold_label", "Premise", "Hypothesis", "pred_label", "pred_expl",
        "pred_lbl_decoder"
    ]
    expl_csv = os.path.join(
        current_run_dir,
        time.strftime("%d:%m") + "_" + time.strftime("%H:%M:%S") + "_" +
        which_set + ".csv")
    remove_file(expl_csv)
    expl_f = open(expl_csv, "a")
    writer = csv.writer(expl_f)
    writer.writerow(headers)

    for i in range(0, len(s1), batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + batch_size], word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + batch_size], word_vec)

        current_bs = s1_batch.size(1)
        assert_sizes(s1_batch, 3, [s1_batch.size(0), current_bs, word_emb_dim])
        assert_sizes(s2_batch, 3, [s2_batch.size(0), current_bs, word_emb_dim])

        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(
            s2_batch.cuda())
        tgt_label_batch = Variable(torch.LongTensor(label[i:i +
                                                          batch_size])).cuda()
        tgt_label_expl_batch = label_expl[i:i + batch_size]

        expl_t0 = Variable(
            torch.from_numpy(word_vec['<s>']).float().unsqueeze(0).expand(
                current_bs, word_emb_dim).unsqueeze(0)).cuda()
        assert_sizes(expl_t0, 3, [1, current_bs, word_emb_dim])

        # model forward
        pred_expls, out_lbl = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                                        expl_t0,
                                        mode="forloop")
        assert len(pred_expls) == current_bs, "pred_expls: " + str(
            len(pred_expls)) + " current_bs: " + str(current_bs)

        for b in range(len(pred_expls)):
            assert tgt_label_expl_batch[b] in [
                'entailment', 'neutral', 'contradiction'
            ]
            if len(pred_expls[b]) > 0:
                words = pred_expls[b].strip().split(" ")
                if words[0] == tgt_label_expl_batch[b]:
                    correct_labels_expl += 1

        # accuracy
        pred = out_lbl.data.max(1)[1]
        correct += pred.long().eq(tgt_label_batch.data.long()).cpu().sum()

        # write csv row of predictions
        # Look up for the headers order
        for j in range(len(pred_expls)):
            row = []
            row.append(get_key_from_val(label[i + j], dict_labels))
            row.append(' '.join(s1[i + j][1:-1]))
            row.append(' '.join(s2[i + j][1:-1]))
            row.append(get_key_from_val(pred[j], dict_labels))
            row.append(pred_expls[j][1:-1])
            row.append(pred_expls[j][0])
            writer.writerow(row)

        # print example
        if i % print_every == 0:
            print(which_set.upper() + " example: ")
            print("Premise:  ", ' '.join(s1[i]), " LENGHT: ", s1_len[0])
            print("Hypothesis:  ", ' '.join(s2[i]), " LENGHT: ", s2_len[0])
            print("Gold label:  ", get_key_from_val(label[i], dict_labels))
            print("Predicted label:  ", get_key_from_val(pred[0], dict_labels))
            print("Predicted explanation:  ", pred_expls[0], "\n\n\n")

    eval_acc = round(100 * correct / len(s1), 2)
    eval_acc_label_expl = round(100 * correct_labels_expl / len(s1), 2)
    print(which_set.upper() + " no train ", eval_acc, '\n\n\n')
    expl_f.close()
    return eval_acc, eval_acc_label_expl
Exemplo n.º 4
0
def trainepoch(epoch):
    print('\nTRAINING : Epoch ' + str(epoch))
    esnli_net.train()

    if (epoch > 1) and (params.annealing_alpha) and (
            params.alpha + params.annealing_rate <= params.annealing_max):
        params.alpha += params.annealing_rate
        print "alpha: ", str(params.alpha)

    label_costs = []
    expl_costs = []
    all_losses = []
    cum_n_words = 0
    cum_ppl = 0
    correct = 0.

    # shuffle the data
    permutation = np.random.permutation(len(train['s1']))

    s1 = train['s1'][permutation]
    s2 = train['s2'][permutation]
    expl_1 = train['expl_1'][permutation]
    label = train['label'][permutation]
    label_expl = permute(train['label_expl'], permutation)

    optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] * params.decay if epoch>1\
     and 'sgd' in params.optimizer else optimizer.param_groups[0]['lr']
    print('Learning rate : {0}'.format(optimizer.param_groups[0]['lr']))

    for stidx in range(0, len(s1), params.batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[stidx:stidx + params.batch_size],
                                     word_vec)
        s2_batch, s2_len = get_batch(s2[stidx:stidx + params.batch_size],
                                     word_vec)
        input_expl_batch, _ = get_batch(
            expl_1[stidx:stidx + params.batch_size], word_vec)

        # eliminate last input to explanation because we wouldn't need to input </s> and we need same number of input and output
        input_expl_batch = input_expl_batch[:-1]

        s1_batch, s2_batch, input_expl_batch = Variable(
            s1_batch.cuda()), Variable(s2_batch.cuda()), Variable(
                input_expl_batch.cuda())
        tgt_label_batch = Variable(
            torch.LongTensor(label[stidx:stidx + params.batch_size])).cuda()
        tgt_label_expl_batch = label_expl[stidx:stidx + params.batch_size]

        tgt_expl_batch, lens_tgt_expl = get_target_expl_batch(
            expl_1[stidx:stidx + params.batch_size], word_index)
        assert tgt_expl_batch.dim() == 2, "tgt_expl_batch.dim()=" + str(
            tgt_expl_batch.dim())
        tgt_expl_batch = Variable(tgt_expl_batch).cuda()

        # model forward train
        out_expl, out_lbl = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                                      input_expl_batch, 'teacher')

        pred = out_lbl.data.max(1)[1]
        current_bs = len(pred)
        correct += pred.long().eq(tgt_label_batch.data.long()).cpu().sum()
        assert len(pred) == len(
            s1[stidx:stidx + params.batch_size]), "len(pred)=" + str(
                len(pred)
            ) + " while len(s1[stidx:stidx + params.batch_size])=" + str(
                len(s1[stidx:stidx + params.batch_size]))
        answer_idx = torch.max(out_expl, 2)[1]

        # print example
        if stidx % params.print_every == 0:
            print current_run_dir, '\n'
            print 'epoch: ', epoch
            print "Sentence1:  ", ' '.join(s1[stidx]), " LENGTH: ", s1_len[0]
            print "Sentence2:  ", ' '.join(s2[stidx]), " LENGTH: ", s2_len[0]
            print "Gold label:  ", get_key_from_val(label[stidx],
                                                    NLI_DIC_LABELS)
            print "Predicted label:  ", get_key_from_val(
                pred[0], NLI_DIC_LABELS)
            print "Explanation:  ", ' '.join(expl_1[stidx])
            print "Target expl:  ", get_sentence_from_indices(
                word_index, tgt_expl_batch[:,
                                           0]), " LENGTH: ", lens_tgt_expl[0]
            print "Decoded explanation:  ", get_sentence_from_indices(
                word_index, answer_idx[:, 0]), "\n\n\n"

        # loss labels
        loss_labels = criterion_labels(out_lbl, tgt_label_batch)
        label_costs.append(loss_labels.data[0])

        # loss expl; out_expl is T x bs x vocab_sizes, tgt_expl_batch is T x bs
        loss_expl = criterion_expl(
            out_expl.view(out_expl.size(0) * out_expl.size(1), -1),
            tgt_expl_batch.view(
                tgt_expl_batch.size(0) * tgt_expl_batch.size(1)))
        expl_costs.append(loss_expl.data[0])
        cum_n_words += lens_tgt_expl.sum()
        cum_ppl += loss_expl.data[0]

        # backward
        loss = params.lmbda * (params.alpha * loss_labels +
                               (1 - params.alpha) * loss_expl)
        all_losses.append(loss.data[0])
        optimizer.zero_grad()
        loss.backward()

        # infersent version of gradient clipping
        shrink_factor = 1

        # total grads norm
        total_norm = 0
        for p in esnli_net.parameters():
            if p.requires_grad:
                p.grad.data.div_(current_bs)
                total_norm += p.grad.data.norm()**2
        total_norm = np.sqrt(total_norm)
        total_norms.append(total_norm)

        # encoder grads norm
        enc_norm = 0
        for p in esnli_net.encoder.parameters():
            if p.requires_grad:
                enc_norm += p.grad.data.norm()**2
        enc_norm = np.sqrt(enc_norm)
        enc_norms.append(enc_norm)

        if total_norm > params.max_norm:
            shrink_factor = params.max_norm / total_norm
        current_lr = optimizer.param_groups[0][
            'lr']  # current lr (no external "lr", for adam)
        optimizer.param_groups[0][
            'lr'] = current_lr * shrink_factor  # just for update

        # optimizer step
        optimizer.step()
        optimizer.param_groups[0]['lr'] = current_lr

        # print and reset losses
        if len(all_losses) == params.avg_every:
            train_all_losses.append(np.mean(all_losses))
            train_expl_costs.append(params.lmbda * (1 - params.alpha) *
                                    np.mean(expl_costs))
            train_label_costs.append(params.lmbda * params.alpha *
                                     np.mean(label_costs))
            train_ppl.append(math.exp(cum_ppl / cum_n_words))
            print '{0} ; epoch: {1}, total loss : {2} ; lmbda * alpha * (lbl loss) : {3}; lmbda * (1-alpha) * (expl loss) : {4} ; train ppl : {5}; accuracy train esnli : {6}'.format(
                stidx, epoch, round(train_all_losses[-1], 2),
                round(train_label_costs[-1], 2), round(train_expl_costs[-1],
                                                       2),
                round(train_ppl[-1], 2),
                round(100. * correct / (stidx + s1_batch.size(1)), 2))
            label_costs = []
            expl_costs = []
            all_losses = []
            cum_n_words = 0
            cum_ppl = 0
    train_acc = round(100 * correct / len(s1), 2)
    print('results : epoch {0} ; mean accuracy train esnli : {1}'.format(
        epoch, train_acc))
    return train_acc