def simple_Krig(SiteInfo, XYTargets, DataRecord): ''' Wrapper for Kriging interpolation of all data, and save in PKL format \n Parameters ---------- **SiteInfo** -- Path to file with gauge location \n **XYTargets** -- Path to file with interpolation target locations \n **DataRecord** -- Path to file with variable registries \n Returns ------- **VarField** -- file with pickled variable field \n **VarUnc** -- file with pickled variance of estimated variable \n **AvgVar** -- file with pickled average of estimated field ''' stations, targets, records = data_load.lcsv(SiteInfo, XYTargets, DataRecord) experimental_sv, record_covariance_matrix = exp_semivariogram(records, stations) xopt, ModOpt, candidate_sv = theor_variogram(experimental_sv) Z, SP, ZAvg = krig(xopt[0]/3.0, targets, stations, records, record_covariance_matrix, ModOpt, xopt, candidate_sv, tmin=0, tmax='def', MinNumSt=3, krig_type='Sim') return Z, SP, ZAvg
def simple_Krig(SiteInfo, XYTargets, DataRecord): ''' Wrapper for Kriging interpolation of all data, and save in PKL format \n Parameters ---------- **SiteInfo** -- Path to file with gauge location \n **XYTargets** -- Path to file with interpolation target locations \n **DataRecord** -- Path to file with variable registries \n Returns ------- **VarField** -- file with pickled variable field \n **VarUnc** -- file with pickled variance of estimated variable \n **AvgVar** -- file with pickled average of estimated field ''' stations, targets, records = data_load.lcsv(SiteInfo, XYTargets, DataRecord) experimental_sv, record_covariance_matrix = exp_semivariogram( records, stations) xopt, ModOpt, candidate_sv = theor_variogram(experimental_sv) Z, SP, ZAvg = krig(xopt[0] / 3.0, targets, stations, records, record_covariance_matrix, ModOpt, xopt, candidate_sv, tmin=0, tmax='def', MinNumSt=3, krig_type='Sim') return Z, SP, ZAvg
ssp[t, tarcoun] = sp_zeros zz[t, tarcoun] = 0 if verbose: print ('Finished step {0}/{1} at {2}'.format(n, len(data), ctime())) return zz, ssp if __name__ == '__main__': ''' Module testing function ''' stations, targets, records = data_load.lcsv('TestData\GaugeLoc.csv', 'TestData\InterpPts.csv', 'TestData\Dataset.csv') stations = np.array(stations)/1000.0 targets = np.array(targets)/1000.0 experimental_sv, record_covariance_matrix = exp_semivariogram(records, stations) xopt, ModOpt, candidate_sv = theor_variogram(experimental_sv) meas_err_mat = np.random.rand(len(records), len(stations)) Z, SP, ZAvg = krig(10.0, targets, stations, records, record_covariance_matrix, ModOpt, xopt, candidate_sv, 10 ,20, MinNumSt=3, krig_type='Ord') print 'Ordinary Kriging working fine' Z, SP, ZAvg = krig(10.0, targets, stations, records,
ssp[t, tarcoun] = sp_zeros zz[t, tarcoun] = 0 if verbose: print('Finished step {0}/{1} at {2}'.format( n, len(data), ctime())) return zz, ssp if __name__ == '__main__': ''' Module testing function ''' stations, targets, records = data_load.lcsv('TestData\GaugeLoc.csv', 'TestData\InterpPts.csv', 'TestData\Dataset.csv') stations = np.array(stations) / 1000.0 targets = np.array(targets) / 1000.0 experimental_sv, record_covariance_matrix = exp_semivariogram( records, stations) xopt, ModOpt, candidate_sv = theor_variogram(experimental_sv) meas_err_mat = np.random.rand(len(records), len(stations)) Z, SP, ZAvg = krig(10.0, targets, stations, records, record_covariance_matrix, ModOpt,