Exemplo n.º 1
0
def new_eval_net(data_loader, model, opts):
    model.eval()
    dataset = data_loader.dataset
    scales = [1., 0.5, 0.75, 1.25, 1.5, 2.0]
    assert (scales[0] == 1)
    n_scales = len(scales)

    from data_process.process_utils import resize_hm
    import cv2
    index = 0

    with torch.no_grad():
        img, heat_map, paf, ignore_mask, _ = dataset[index]

        height = img.shape[1]
        width = img.shape[2]
        img_torch = torch.from_numpy(img).float().cuda()
        img_torch = torch.unsqueeze(img_torch, 0)

        heatmaps, pafs = model(img_torch)
        heatmap = heatmaps.data.cpu().numpy()[0]
        paf = pafs.data.cpu().numpy()[0]
        print(np.sum(heatmap < 0))
        print(np.sum(heatmap > 1))
        heatmap = resize_hm(heatmap, height)
        paf = resize_hm(paf, height)
        print(np.sum(heatmap < 0))
        print(np.sum(heatmap > 1))

        raw_img, heat_map, paf, ignore_mask, keypoints = dataset.get_item_raw(
            index, False)
        cv2.imwrite("eval/img.jpg", raw_img * 255)
        for i in range(19):
            cv2.imwrite("eval/hm_" + str(i) + ".jpg", heatmap[i] * 255)
Exemplo n.º 2
0
def eval_net(data_loader, model, opts):
    model.eval()
    dataset = data_loader.dataset
    scales = [1., 0.5, 0.75, 1.25, 1.5, 2.0]
    assert (scales[0]==1)
    n_scales = len(scales)
    outputs = []
    dataset_len = 100 #len(dataset)
    keypoints_list = []
    runtimes = []
    with torch.no_grad():
        for i in range(dataset_len):
            print(i)
            start = time.time()
            imgs, heatmap_t, paf_t, ignore_mask_t, keypoints = dataset.get_imgs_multiscale(i, scales,flip=False)
            n_imgs = len(imgs)
            assert(n_imgs == n_scales)
            heights = list(map(lambda x: x.shape[1], imgs))
            widths = list(map(lambda x: x.shape[2], imgs))
            max_h, max_w = max(heights), max(widths)
            imgs_np = np.zeros((n_imgs, 3, max_h, max_w))
            for j in range(n_imgs):
                img = imgs[j]
                h, w = img.shape[1], img.shape[2]
                imgs_np[j,:,:h,:w] = img
            img_basic = imgs[0]

            heatmap_avg_lst = []
            paf_avg_lst = []
            print("first loop", time.time() - start)
            for j in range(0, n_imgs):
                imgs_torch = torch.from_numpy(imgs_np[j:j+1]).float().to(opts.device)
                heatmaps, pafs = model(imgs_torch)
                heatmap = heatmaps[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
                paf = pafs[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
                heatmap = resize_hm(heatmap, (widths[0], heights[0]))
                paf = resize_hm(paf, (widths[0], heights[0]))
                heatmap_avg_lst += [heatmap]
                paf_avg_lst += [paf]
            heatmap_avg = sum(heatmap_avg_lst)/n_imgs
            paf_avg = sum(paf_avg_lst)/n_imgs
            print("second loop", time.time() - start)
            #visualize_output_single(img_basic, heatmap_t, paf_t, ignore_mask_t, heatmap_avg, paf_avg)
            img_basic = denormalize(img_basic)
            param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5}
            canvas, to_plot, candidate, subset = decode_pose(img_basic, param, heatmap_avg, paf_avg)
            final = time.time()-start
            runtimes += [final]
            print("both loops took ", final)
            keypoints_list.append(keypoints)
            append_result(dataset.indices[i], subset, candidate, outputs)
            vis_path = os.path.join(opts.saveDir, 'viz')
            if not os.path.exists(vis_path):
                os.makedirs(vis_path)
            cv2.imwrite(vis_path+'/{}.png'.format(i), to_plot)
    print ("runtime statistics for all images")
    print(scipy.stats.describe(runtimes))
    return outputs, dataset.indices[:dataset_len]
Exemplo n.º 3
0
def visualize_output_single(img, heatmap_t, paf_t, ignore_mask_t, heatmap_o, paf_o):
    img = (denormalize(img) * 255).astype('uint8')
    heatmap_o = resize_hm(heatmap_o, (img.shape[1], img.shape[0]))
    paf_o = resize_hm(paf_o, (img.shape[1], img.shape[0]))
    heatmap_t = resize_hm(heatmap_t, (img.shape[1], img.shape[0]))
    paf_t = resize_hm(paf_t, (img.shape[1], img.shape[0]))
    ignore_mask = cv2.resize(ignore_mask_t, (img.shape[1], img.shape[0]))
    visualize_heatmap(img, heatmap_o, 'heatmap_out')
    visualize_heatmap(img, heatmap_t, 'heatmap_target')
    visualize_paf(img, reshape_paf(paf_o), 'paf_out')
    visualize_paf(img, reshape_paf(paf_t), 'paf_target')
    visualize_masks(img, ignore_mask)
Exemplo n.º 4
0
def eval_oneshot(img_path, saveDir, model, opts):
    img = cv2.imread(img_path)
    img = img.astype('float32') / 255.

    imgs = []
    scales = [1., 0.5, 0.75, 1.25, 1.5, 2.0]
    for scale in scales:
        width, height = img.shape[1], img.shape[0]
        new_width, new_height = int(scale* width), int(scale*height)
        scaled_img = cv2.resize(img.copy(), (new_width, new_height))
        scaled_img = normalize(scaled_img)
        imgs.append(scaled_img)

    assert(len(imgs) == len(scales))
    start = time.time()

    heights = list(map(lambda x: x.shape[1], imgs))
    widths = list(map(lambda x: x.shape[2], imgs))
    max_h, max_w = max(heights), max(widths)
    imgs_np = np.zeros((len(imgs), 3, max_h, max_w))
    for j in range(len(imgs)):
        img = imgs[j]
        h, w = img.shape[1], img.shape[2]
        imgs_np[j,:,:h,:w] = img
        img_basic = imgs[0]

    heatmap_avg_lst = []
    paf_avg_lst = []
    print("first loop", time.time() - start)
    with torch.no_grad():
        for j in range(len(imgs)):
            imgs_torch = torch.from_numpy(imgs_np[j:j+1]).float().cuda()
            heatmaps, pafs = model(imgs_torch)
            heatmap = heatmaps[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
            paf = pafs[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
            heatmap = resize_hm(heatmap, (widths[0], heights[0]))
            paf = resize_hm(paf, (widths[0], heights[0]))
            heatmap_avg_lst += [heatmap]
            paf_avg_lst += [paf]
    heatmap_avg = sum(heatmap_avg_lst)/len(imgs)
    paf_avg = sum(paf_avg_lst)/len(imgs)
    print("second loop", time.time() - start)
    #visualize_output_single(img_basic, heatmap_t, paf_t, ignore_mask_t, heatmap_avg, paf_avg)
    img_basic = denormalize(img_basic)
    param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5}
    canvas, to_plot, candidate, subset = decode_pose(img_basic, param, heatmap_avg, paf_avg)
    final = time.time()-start

    print("both loops took ", final)
    vis_path = os.path.join(saveDir, 'viz')
    if not os.path.exists(vis_path):
        os.makedirs(vis_path)
    cv2.imwrite(vis_path+'/out.png', to_plot)
Exemplo n.º 5
0
def test_net(data_loader, model, opts):
    model.eval()
    dataset = data_loader.dataset
    outputs = []
    dataset_len = 100  #len(dataset)
    runtimes = []
    with torch.no_grad():
        for i, imgs in enumerate(dataset):
            print(i)
            start = time.time()
            n_imgs = len(imgs)
            heights = list(map(lambda x: x.shape[1], imgs))
            widths = list(map(lambda x: x.shape[2], imgs))
            img_basic = imgs[0]

            heatmap_avg_lst = []
            paf_avg_lst = []
            print("first loop", time.time() - start)
            for j in range(0, n_imgs):
                imgs_torch = torch.from_numpy(imgs[j:j + 1]).float().to(
                    opts.device)
                heatmaps, pafs = model(imgs_torch)
                heatmap = heatmaps[-1].data.cpu().numpy()[0, :, :heights[j] //
                                                          8, :widths[j] // 8]
                paf = pafs[-1].data.cpu().numpy()[0, :, :heights[j] //
                                                  8, :widths[j] // 8]
                heatmap = resize_hm(heatmap, (widths[0], heights[0]))
                paf = resize_hm(paf, (widths[0], heights[0]))
                heatmap_avg_lst += [heatmap]
                paf_avg_lst += [paf]
            heatmap_avg = sum(heatmap_avg_lst) / n_imgs
            paf_avg = sum(paf_avg_lst) / n_imgs

            print("second loop", time.time() - start)
            #visualize_output_single(img_basic, heatmap_t, paf_t, ignore_mask_t, heatmap_avg, paf_avg)
            img_basic = denormalize(img_basic)

            param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5}
            canvas, to_plot, candidate, subset = decode_pose(
                img_basic, param, heatmap_avg, paf_avg)

            final = time.time() - start
            runtimes += [final]
            print("both loops took ", final)
            append_result(dataset.idx, subset, candidate, outputs)
            vis_path = Path(opts.saveDir, 'viz')
            vis_path.mkdir(parents=True, exist_ok=True)
            cv2.imwrite(str(vis_path) + '/{}.png'.format(i), to_plot)
    print("runtime statistics for all images")
Exemplo n.º 6
0
def run_pose_model(person_id, img, model):
    model.eval()
    scales = [1., 0.5, 0.75, 1.25, 1.5, 2.0]
    assert (scales[0]==1)
    n_scales = len(scales)
    outputs = []
    keypoints_list = []

    with torch.no_grad():
        imgs = get_imgs_multiscale(img, scales)
        n_imgs = len(imgs)
        assert(n_imgs == n_scales)
        heights = list(map(lambda x: x.shape[1], imgs))
        widths = list(map(lambda x: x.shape[2], imgs))
        max_h, max_w = max(heights), max(widths)
        imgs_np = np.zeros((n_imgs, 3, max_h, max_w))
        for j in range(n_imgs):
            img = imgs[j]
            h, w = img.shape[1], img.shape[2]
            imgs_np[j,:,:h,:w] = img
        img_basic = imgs[0]

        heatmap_avg_lst = []
        paf_avg_lst = []
        for j in range(0, n_imgs):
            imgs_torch = torch.from_numpy(imgs_np[j:j+1]).float().cuda()
            heatmaps, pafs = model(imgs_torch)
            heatmap = heatmaps[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
            paf = pafs[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
            heatmap = resize_hm(heatmap, (widths[0], heights[0]))
            paf = resize_hm(paf, (widths[0], heights[0]))
            heatmap_avg_lst += [heatmap]
            paf_avg_lst += [paf]
        heatmap_avg = sum(heatmap_avg_lst)/n_imgs
        paf_avg = sum(paf_avg_lst)/n_imgs

        img_basic = denormalize(img_basic)

        param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5}
        canvas, to_plot, candidate, subset = decode_pose(img_basic, param, heatmap_avg, paf_avg)
        append_result(person_id, subset, candidate, outputs)


        if not os.path.exists('./viz_result'):
            os.makedirs('./viz_result')
        cv2.imwrite('./viz_result/{}_pose.png'.format(person_id), to_plot)

    return outputs
Exemplo n.º 7
0
def eval_net(data_loader, model, opts):
    model.eval()
    dataset = data_loader.dataset
    scales = [1., 0.75, 1.25]
    assert (scales[0] == 1)
    n_scales = len(scales)
    outputs = []
    dataset_len = 100  #len(dataset)
    for i in range(dataset_len):
        imgs, heatmap_t, paf_t, ignore_mask_t = dataset.get_imgs_multiscale(
            i, scales, flip=False)
        n_imgs = len(imgs)
        assert (n_imgs == n_scales)
        heights = list(map(lambda x: x.shape[1], imgs))
        widths = list(map(lambda x: x.shape[2], imgs))
        max_h, max_w = max(heights), max(widths)
        imgs_np = np.zeros((n_imgs, 3, max_h, max_w))
        for j in range(n_imgs):
            img = imgs[j]
            h, w = img.shape[1], img.shape[2]
            imgs_np[j, :, :h, :w] = img
        img_basic = imgs[0]
        heatmap_avg = np.zeros(heatmap_t.shape)
        paf_avg = np.zeros(paf_t.shape)
        for j in range(0, n_imgs):
            imgs_torch = torch.from_numpy(imgs_np[j:j + 1]).float().cuda()
            heatmaps, pafs = model(imgs_torch)
            heatmap = heatmaps[-1].data.cpu().numpy()[0, :, :heights[j] //
                                                      8, :widths[j] // 8]
            paf = pafs[-1].data.cpu().numpy()[0, :, :heights[j] //
                                              8, :widths[j] // 8]
            heatmap = resize_hm(heatmap, (widths[0], heights[0]))
            paf = resize_hm(paf, (widths[0], heights[0]))
            heatmap_avg += heatmap / n_imgs
            paf_avg += paf / n_imgs
        #visualize_output_single(img_basic, heatmap_t, paf_t, ignore_mask_t, heatmap_avg, paf_avg)
        img_basic = denormalize(img_basic)
        param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5}
        canvas, to_plot, candidate, subset = decode_pose(
            img_basic, param, heatmap_avg, paf_avg)
        append_result(dataset.indices[i], subset, candidate, outputs)
        vis_path = os.path.join(opts.saveDir, 'viz')
        if not os.path.exists(vis_path):
            os.makedirs(vis_path)
        cv2.imwrite(vis_path + '/{}.png'.format(i), to_plot)
    return outputs, dataset.indices[:dataset_len]
Exemplo n.º 8
0
def visualize_output_single(img, heatmap_t, paf_t, ignore_mask_t, heatmap_o,
                            paf_o):
    img = (denormalize(img) * 255).astype('uint8')
    heatmap_o = resize_hm(heatmap_o, (img.shape[1], img.shape[0]))
    paf_o = resize_hm(paf_o, (img.shape[1], img.shape[0]))
    heatmap_t = resize_hm(heatmap_t, (img.shape[1], img.shape[0]))
    paf_t = resize_hm(paf_t, (img.shape[1], img.shape[0]))
    ignore_mask = cv2.resize(ignore_mask_t, (img.shape[1], img.shape[0]))
    cv2.namedWindow('heatmap_out')
    cv2.namedWindow('heatmap_target')
    cv2.namedWindow('paf_out')
    cv2.namedWindow('paf_target')
    cv2.namedWindow('masked_img')
    cv2.startWindowThread()
    visualize_heatmap(img, heatmap_o, 'heatmap_out')
    visualize_heatmap(img, heatmap_t, 'heatmap_target')
    visualize_heatmap(img, paf_o, 'paf_out')
    visualize_heatmap(img, paf_t, 'paf_target')
    visualize_masks(img, ignore_mask)
Exemplo n.º 9
0
def eval_net(data_loader, model, opts, ids_in_ckpt=[], fraction=[0, 0.3]):
    model.eval()
    dataset = data_loader.dataset
    scales = [1., 0.5, 1.25, 1.5, 1.75, 2.0]
    # scales = [1.]
    assert (scales[0]==1)
    n_scales = len(scales)
    dataset_len = len(dataset)
    # keypoints_list = []
    runtimes = []

    with torch.no_grad():
        for i in range(int(dataset_len * fraction[0]), int(dataset_len * fraction[1])):
            if dataset.indices[i] in ids_in_ckpt:
                print(f"skip {i}th image of image_id {dataset.indices[i]}.")
                continue

            print(i)
            start = time.time()
            # imgs, heatmap_t, paf_t, ignore_mask_t = dataset.get_imgs_multiscale(i, scales, flip=False, to_resize=False)
            if opts["to_test"]:
                imgs, orig_shape = dataset.get_imgs_multiscale_resize(i, scales, flip=False, resize_factor=1)
                heatmap_t = np.zeros((opts["model"]["nJoints"], opts["test"]["hmSize"], opts["test"]["hmSize"]))
                paf_t = np.zeros((opts["model"]["nLimbs"], opts["test"]["hmSize"], opts["test"]["hmSize"]))
                ignore_mask_t = np.zeros((opts["test"]["hmSize"], opts["test"]["hmSize"]))
            else:
                imgs, heatmap_t, paf_t, ignore_mask_t, orig_shape = dataset.get_imgs_multiscale_resize(i, scales,
                                                                                                       flip=False,
                                                                                                       resize_factor=1)
            resize_factors = tuple([orig_shape[i] / imgs[0].shape[i + 1] for i in [1, 0]])
            # resize_factors = (1, 1)
            print(f"input_size:{imgs[0].shape}, origin_size:{orig_shape}")
            n_imgs = len(imgs)
            assert(n_imgs == n_scales)
            heights = list(map(lambda x: x.shape[1], imgs))
            widths = list(map(lambda x: x.shape[2], imgs))
            max_h, max_w = max(heights), max(widths)
            imgs_np = np.zeros((n_imgs, 3, max_h, max_w))
            for j in range(n_imgs):
                img = imgs[j]
                h, w = img.shape[1], img.shape[2]
                imgs_np[j,:,:h,:w] = img
            img_basic = imgs[0]

            heatmap_avg_lst = []
            paf_avg_lst = []
            print("first loop", time.time() - start)
            for j in range(0, n_imgs):
                imgs_torch = torch.from_numpy(imgs_np[j:j+1]).float().cuda()
                heatmaps, pafs = model(imgs_torch)
                heatmap = heatmaps[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
                paf = pafs[-1].data.cpu().numpy()[0, :, :heights[j]//8, :widths[j]//8]
                heatmap = resize_hm(heatmap, (widths[0], heights[0]))
                paf = resize_hm(paf, (widths[0], heights[0]))
                heatmap_avg_lst += [heatmap]
                paf_avg_lst += [paf]
            heatmap_avg = sum(heatmap_avg_lst)/n_imgs
            paf_avg = sum(paf_avg_lst)/n_imgs
            print("second loop", time.time() - start)
            if opts["viz"]["vizOut"]:
                visualize_output_single(img_basic, heatmap_t, paf_t, ignore_mask_t, heatmap_avg, paf_avg)
            img_basic = denormalize(img_basic)
            param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5}
            vis_path = os.path.join(opts["env"]["saveDir"], "val" if not opts["to_test"] else "test" + '_viz')

            def native():
                candidates, subset = decode_pose(img_basic, param, heatmap_avg, paf_avg)
                plot_pose_pdf(img_basic, candidates, subset, os.path.join(vis_path, f"{i}.pdf"))
                outputs = append_result(dataset.indices[i], subset, candidates)
                return outputs

            def openpose_inf():
                outputs = openpose_decode_pose(img_basic, param, heatmap_avg, paf_avg, opts,
                                               dataset.indices[i], os.path.join(vis_path, f"{i}.pdf"),
                                               resize_shape=None)
                return outputs

            if not os.path.exists(vis_path):
                os.makedirs(vis_path)

            outputs = native() # native()
            for out in outputs:
                out['keypoints'][::3] = [i * resize_factors[0] for i in out['keypoints'][::3]]
                out['keypoints'][1::3] = [i * resize_factors[1] for i in out['keypoints'][1::3]]
            final = time.time()-start
            print("both loops took ", final)

            yield outputs, dataset.indices[i]
def test_net(data_loader, model, opts):
    model.eval()
    dataset = data_loader.dataset
    scales = [1., 0.5, 0.75, 1.25, 1.5, 2.0]
    #    scales = [1.]
    assert (scales[0] == 1)
    n_scales = len(scales)
    dataset_len = len(dataset)  #len(dataset)
    runtimes = []

    with torch.no_grad():
        for i in range(dataset_len):
            print(i)
            start = time.time()
            imgs = dataset.get_imgs_multiscale(i, scales, flip=False)
            n_imgs = len(imgs)
            assert (n_imgs == n_scales)
            heights = list(map(lambda x: x.shape[1], imgs))
            widths = list(map(lambda x: x.shape[2], imgs))
            max_h, max_w = max(heights), max(widths)
            imgs_np = np.zeros((n_imgs, 3, max_h, max_w))
            for j in range(n_imgs):
                img = imgs[j]
                h, w = img.shape[1], img.shape[2]
                imgs_np[j, :, :h, :w] = img
            img_basic = imgs[0]

            heatmap_avg_lst = []
            paf_avg_lst = []
            for j in range(0, n_imgs):
                if torch.cuda.is_available():
                    imgs_torch = torch.from_numpy(imgs_np[j:j +
                                                          1]).float().cuda()
                else:
                    imgs_torch = torch.from_numpy(imgs_np[j:j +
                                                          1]).float().cpu()
                pafs, heatmap = model(imgs_torch)
                heatmap = heatmap.data.cpu().numpy()[0, :, :heights[j] //
                                                     8, :widths[j] // 8]
                paf = pafs[-1].data.cpu().numpy()[0, :, :heights[j] //
                                                  8, :widths[j] // 8]
                heatmap = resize_hm(heatmap, (widths[0], heights[0]))
                paf = resize_hm(paf, (widths[0], heights[0]))
                heatmap_avg_lst += [heatmap]
                paf_avg_lst += [paf]
            heatmap_avg = sum(heatmap_avg_lst) / n_imgs
            paf_avg = sum(paf_avg_lst) / n_imgs
            #visualize_output_single(img_basic, heatmap_t, paf_t, ignore_mask_t, heatmap_avg, paf_avg)
            img_basic = denormalize(img_basic)
            param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5}
            canvas, to_plot, candidate, subset = decode_pose(
                img_basic, param, heatmap_avg, paf_avg)
            final = time.time() - start
            runtimes += [final]
            image_id = dataset.indices[i]
            print(image_id)
            if len(candidate) > 0:
                candidate = candidate[:, :3]
            vis_path = os.path.join(opts.saveDir, 'viz')
            if not os.path.exists(vis_path):
                os.makedirs(vis_path)
            cv2.imwrite(vis_path + '/{}'.format(image_id), to_plot)

    print("All images finished")