Exemplo n.º 1
0
    nErrors = len(errors)
    xAxis = list(np.arange(0., failureThreshold + step, step))
    ced = [float(np.count_nonzero([errors <= x])) / nErrors for x in xAxis]
    AUC = simps(ced, x=xAxis) / failureThreshold
    failureRate = 1. - ced[-1]
    print('AUC @ %.3f  : %.3f' % (failureThreshold, AUC))
    print('Failure rate: %.3f' % (failureRate))
    print('Meanerror   : %.3f' % (np.mean(errors)))


tfrecordsTrain = 'data/train.tfrecords'
tfrecordsTest = 'data/validation.tfrecords'
initmarks = np.load('data/initlandmark.npy')
initmarks = tf.constant(initmarks, dtype=tf.float32)

imgs_batch, landmarks_batch = loadTfrecords(tfrecordsTrain, batch_size)
#imgs_test, landmarks_test  = loadTfrecords(tfrecordsTest ,batch_size)
x = tf.placeholder(dtype=tf.float32, shape=(None, 112, 112, 1))
y = tf.placeholder(dtype=tf.float32, shape=(None, 136))
training = FaceAlignmnetTraining(initmarks, batch_size, STAGE)
dan = training.createCNN(x, y, STAGE)
saver = tf.train.Saver()
#print(model.shape)
#tf.reset_default_graph()
with tf.Session() as sess:
    curTime = time.clock()
    saver = tf.train.Saver(
        var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='S1'))
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, './model/S1_model_iter-0')
    print("Starting training......")
Exemplo n.º 2
0
    error = np.mean(np.sqrt(np.sum(
        (gtLandmarks - resLandmarks)**2, axis=1))) / normDist
    return error


def AUCError(errors, failureThreshold, step=0.0001, showCurve=False):
    nErrors = len(errors)
    xAxis = list(np.arange(0., failureThreshold + step, step))
    ced = [float(np.count_nonzero([errors <= x])) / nErrors for x in xAxis]
    AUC = simps(ced, x=xAxis) / failureThreshold
    failureRate = 1. - ced[-1]
    print('AUC @ %.3f  : %.3f' % (failureThreshold, AUC))
    print('Failure rate: %.3f' % (failureRate))


imgs_batch, landmarks_batch = loadTfrecords(tfrecordsPath, batch_size)
x = tf.placeholder(dtype=tf.float32, shape=(None, 112, 112, 1))
y = tf.placeholder(dtype=tf.float32, shape=(None, 136))

training = FaceAlignmnetTraining(initmarks, batch_size, STAGE)
dan = training.createCNN(x, y, l2_scale, STAGE)
saver = tf.train.Saver()

with tf.Session() as sess:
    dataset = np.load(testSet)
    dataImgs = (dataset["imgs"] - meanImg) / stdDevImg
    #print(dataImgs.shape)
    dataLandmarks = dataset["gtLandmarks"]
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, outputsnap)
    errors = []