Exemplo n.º 1
0
    def predict(self, image=None, text=None):
        from data_processing import img_feature_get, text_feature_get
        if torch.cuda.is_available():
            self.text_model.cuda()
            self.img_model.cuda()
        else:
            self.text_model.cpu()
            self.img_model.cpu()
        img_encode, img_decode1, img_decode2 = ([], [], [])
        text_encode, text_decode1, text_decode2 = ([], [], [])
        if image:
            a = img_feature_get.get_img_feature([image])[0]
            if torch.cuda.is_available():
                a = a.cuda()
            img_encode, img_decode1, img_decode2 = self.img_model(a)
        if text:
            a = text_feature_get.get_text_feature([text])[0]
            if torch.cuda.is_available():
                a = a.cuda()
            text_encode, text_decode1, text_decode2 = self.text_model(a)

        if image and text:
            return img_encode.detach().cpu(), text_encode.detach().cpu()
        if image:
            return img_encode.detach().cpu()
        if text:
            return text_encode.detach().cpu()
Exemplo n.º 2
0
 def united_search(self, get_img=True):
     for label in self.img_labels:
         label.close()
     for label in self.text_labels:
         label.close()
     global img_data, text_data, _img_data, _text_data
     if get_img and self.text_file:
         f = open(self.text_file, 'r')
         text = f.read()
         result = self.model.search_top3(
             mode=2,
             search_data=img_data,
             text=text_feature_get.get_text_feature([text])[0])
         for i in range(3):
             self.img_labels[i].setPixmap(
                 QtGui.QPixmap(_img_data[result[i]]))
             self.img_labels[i].show()
     elif not get_img and self.img_file:
         result = self.model.search_top3(
             mode=1,
             search_data=text_data,
             img=img_feature_get.get_img_feature([self.img_file],
                                                 mode=3)[0])
         for i in range(3):
             self.text_labels[i].setText(_text_data[result[i]])
             self.text_labels[i].show()
Exemplo n.º 3
0
 def run(self):
     global _text_data, text_data
     text_data = text_feature_get.get_text_feature(texts=_text_data)
     mi = text_data.min().numpy()
     ma = text_data.max().numpy()
     text_data = (text_data - mi) / (ma - mi)
     #文本数据0-1归一化
     global n
     n -= 1
Exemplo n.º 4
0
 mode = int(
     input(
         'search mode:1.img2text 2.text2img 3.img_text2text 4.img_text2img 5.exit\n'
     ))
 if mode == 5:
     break
 data = input("input data:\n")
 if mode == 1:
     result = model.search_top3(mode=mode,
                                search_data=text_data,
                                img=img_feature_get.get_img_feature(
                                    [data], mode=y)[0])
 elif mode == 2:
     result = model.search_top3(mode=mode,
                                search_data=img_data,
                                text=text_feature_get.get_text_feature(
                                    [data])[0])
 elif mode == 3:
     _data = input()
     result = model.search_top3(
         mode=mode,
         search_data=text_data,
         img=img_feature_get.get_img_feature([data], mode=y)[0],
         text=text_feature_get.get_text_feature([_data])[0])
 else:
     _data = input()
     result = model.search_top3(
         mode=mode,
         search_data=img_data,
         img=img_feature_get.get_img_feature([data], mode=y)[0],
         text=text_feature_get.get_text_feature([_data])[0])
 print("result:")