Exemplo n.º 1
0
def validate(data_type,
             model,
             seq_length=40,
             saved_model=None,
             class_limit=None,
             image_shape=None):
    batch_size = 32

    # Get the data and process it.
    if image_shape is None:
        data = DataSet(seq_length=seq_length, class_limit=class_limit)
    else:
        data = DataSet(seq_length=seq_length,
                       class_limit=class_limit,
                       image_shape=image_shape)

    val_generator = data.frame_generator(batch_size, 'test', data_type)

    # Get the model.
    rm = ResearchModels(len(data.classes), model, seq_length, saved_model)

    # Evaluate!
    results = rm.model.evaluate_generator(generator=val_generator,
                                          val_samples=3200)

    print(results)
    print(rm.model.metrics_names)
Exemplo n.º 2
0
def train(data_type, seq_length, model, saved_model=None,
          class_limit=None, image_shape=None,
          load_to_memory=False, batch_size=32, nb_epoch=100):
    # Helper: Save the model.
    checkpointer = ModelCheckpoint(
        filepath=os.path.join('data', 'checkpoints', model + '-' + data_type + \
            '.{epoch:03d}-{val_accuracy:.3f}.hdf5'),
        monitor='val_accuracy',
        verbose=1,
        save_best_only=True)

    # Helper: TensorBoard
    tb = TensorBoard(log_dir=os.path.join('data', 'logs', model))

    # Helper: Stop when we stop learning.
    early_stopper = EarlyStopping(patience=50, monitor='val_accuracy')

    # Helper: Save results.
    timestamp = time.time()
    csv_logger = CSVLogger(os.path.join('data', 'logs', model + '-' + 'training-' + \
        str(timestamp) + '.log'))

    # Get the data and process it.
    if image_shape is None:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit
        )
    else:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit,
            image_shape=image_shape
        )

    # Get samples per epoch.
    # Multiply by 0.7 to attempt to guess how much of data.data is the train set.
    steps_per_epoch = (len(data.data) * 0.7) // batch_size

    if load_to_memory:
        # Get data.
        X, y = data.get_all_sequences_in_memory('train', data_type)
        X_test, y_test = data.get_all_sequences_in_memory('test', data_type)
    else:
        # Get generators.
        generator = data.frame_generator(batch_size, 'train', data_type)
        val_generator = data.frame_generator(batch_size, 'test', data_type)

    # Get the model.
    rm = ResearchModels(len(data.classes), model, seq_length, saved_model)

    # Fit!
    if load_to_memory:
        # Use standard fit.
        rm.model.fit(
            X,
            y,
            batch_size=batch_size,
            validation_data=(X_test, y_test),
            verbose=1,
            # callbacks=[tb, early_stopper, csv_logger],
            callbacks=[early_stopper, csv_logger, checkpointer],
            epochs=nb_epoch)
    else:
        # Use fit generator.
        rm.model.fit_generator(
            generator=generator,
            steps_per_epoch=steps_per_epoch,
            epochs=nb_epoch,
            verbose=1,
            # callbacks=[tb, early_stopper, csv_logger, checkpointer],
            callbacks=[ early_stopper, checkpointer],
            validation_data=val_generator,
            validation_steps=40,
            workers=4)