Exemplo n.º 1
0
def evaluate(estimator, label_rate, eval_examples, task_name, label_list,
             tokenizer):
    num_actual_eval_examples = len(eval_examples)
    if FLAGS.use_tpu:
        # TPU requires a fixed batch size for all batches, therefore the number
        # of examples must be a multiple of the batch size, or else examples
        # will get dropped. So we pad with fake examples which are ignored
        # later on. These do NOT count towards the metric (all tf.metrics
        # support a per-instance weight, and these get a weight of 0.0).
        while len(eval_examples) % FLAGS.eval_batch_size != 0:
            eval_examples.append(PaddingInputExample())

    eval_file = os.path.join(FLAGS.output_dir,
                             "eval_" + str(task_name) + ".tf_record")
    file_based_convert_examples_to_features(eval_examples,
                                            None,
                                            label_list,
                                            FLAGS.max_seq_length,
                                            tokenizer,
                                            eval_file,
                                            label_mask_rate=1)

    tf.logging.info("***** Running evaluation *****")
    tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(eval_examples), num_actual_eval_examples,
                    len(eval_examples) - num_actual_eval_examples)
    tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    #  This tells the estimator to run through the entire set.
    eval_steps = None
    # However, if running eval on the TPU, you will need to specify the
    # number of steps.
    if FLAGS.use_tpu:
        assert len(eval_examples) % FLAGS.eval_batch_size == 0
        eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

    eval_drop_remainder = True if FLAGS.use_tpu else False
    eval_input_fn = file_based_input_fn_builder(
        input_file=eval_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=eval_drop_remainder)

    result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

    overall_result_file = open(
        task_name + "_statistics_GANBERT" + str(label_rate) + ".txt", "a+")

    for key in sorted(result.keys()):
        overall_result_file.write(str(label_rate) + " ")
        overall_result_file.write("%s = %s " % (key, str(result[key])))
    overall_result_file.write("\n")

    output_eval_file = os.path.join(FLAGS.output_dir,
                                    "eval_results_" + str(task_name) + ".txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
        tf.logging.info("***** Eval results *****")
        for key in sorted(result.keys()):
            tf.logging.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))
Exemplo n.º 2
0
 def predictor(texts):
     examples = []
     for t in texts:
         examples.append(
             InputExample(guid="test-0",
                          text_a=t,
                          text_b=None,
                          label='UNK'))
     num_actual_predict_examples = len(examples)
     if FLAGS.use_tpu:
         while len(examples) % FLAGS.predict_batch_size != 0:
             examples.append(PaddingInputExample())
     predict_file = os.path.join(FLAGS.output_dir, "lime.tf_record")
     file_based_convert_examples_to_features(examples,
                                             None,
                                             label_list,
                                             FLAGS.max_seq_length,
                                             tokenizer,
                                             predict_file,
                                             label_mask_rate=1)
     predict_drop_remainder = True if FLAGS.use_tpu else False
     predict_input_lime_fn = file_based_input_fn_builder(
         input_file=predict_file,
         seq_length=FLAGS.max_seq_length,
         is_training=False,
         drop_remainder=predict_drop_remainder)
     result = estimator.predict(input_fn=predict_input_lime_fn)
     return np.array([r["probabilities"].tolist() for r in result])
Exemplo n.º 3
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    processors = {"qc-fine": QcFineProcessor}

    label_rate = FLAGS.label_rate

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                  FLAGS.init_checkpoint)

    if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
        raise ValueError(
            "At least one of `do_train`, `do_eval` or `do_predict' must be True."
        )

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    if FLAGS.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, bert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    task_name = FLAGS.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name](bert=True)

    label_list = processor.get_labels()

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        tpu_config=tf.contrib.tpu.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    train_examples = None
    num_train_steps = None
    num_warmup_steps = None
    if FLAGS.do_train:
        train_examples = processor.get_labeled_examples(FLAGS.data_dir)

        num_train_steps = int(
            len(train_examples) / FLAGS.train_batch_size *
            FLAGS.num_train_epochs)
        num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

    model_fn = model_fn_builder(bert_config=bert_config,
                                num_labels=len(label_list),
                                init_checkpoint=FLAGS.init_checkpoint,
                                learning_rate=FLAGS.learning_rate,
                                num_train_steps=num_train_steps,
                                num_warmup_steps=num_warmup_steps,
                                use_tpu=FLAGS.use_tpu,
                                use_one_hot_embeddings=FLAGS.use_tpu)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = tf.contrib.tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.predict_batch_size)

    if FLAGS.do_train:
        train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
        file_based_convert_examples_to_features(train_examples, label_list,
                                                FLAGS.max_seq_length,
                                                tokenizer, train_file)
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)
        train_input_fn = file_based_input_fn_builder(
            input_file=train_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True)
        estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

    if FLAGS.do_eval:
        eval_examples = processor.get_test_examples(FLAGS.data_dir)
        evaluate(estimator=estimator,
                 label_rate=label_rate,
                 eval_examples=eval_examples,
                 task_name=task_name,
                 label_list=label_list,
                 tokenizer=tokenizer)

    if FLAGS.do_predict:
        predict_examples = processor.get_test_examples(FLAGS.data_dir)
        num_actual_predict_examples = len(predict_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on.
            while len(predict_examples) % FLAGS.predict_batch_size != 0:
                predict_examples.append(PaddingInputExample())

        predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
        file_based_convert_examples_to_features(predict_examples, label_list,
                                                FLAGS.max_seq_length,
                                                tokenizer, predict_file)

        tf.logging.info("***** Running prediction*****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(predict_examples), num_actual_predict_examples,
                        len(predict_examples) - num_actual_predict_examples)
        tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

        predict_drop_remainder = True if FLAGS.use_tpu else False
        predict_input_fn = file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=predict_drop_remainder)

        result = estimator.predict(input_fn=predict_input_fn)

        output_predict_file = os.path.join(FLAGS.output_dir,
                                           "test_results.tsv")
        with tf.gfile.GFile(output_predict_file, "w") as writer:
            num_written_lines = 0
            tf.logging.info("***** Predict results *****")
            for (i, prediction) in enumerate(result):
                probabilities = prediction["probabilities"]
                if i >= num_actual_predict_examples:
                    break
                output_line = "\t".join(
                    str(class_probability)
                    for class_probability in probabilities) + "\n"
                writer.write(output_line)
                num_written_lines += 1
        assert num_written_lines == num_actual_predict_examples